Skip to main content

Advertisement

Log in

Expression of Hypoxia-Inducible Factor1-α in Varicocele Disease: a Comprehensive Systematic Review

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Hypoxia has been suggested as an important pathophysiological feature in varicocele disease. On the other hand, the expression of hypoxia-inducible factor 1-alpha (HIF1-α) is associated with the incidence of hypoxia. In this study, we investigated the expression of HIF1-α in varicocele disease through a comprehensive systematic review. We searched PubMed, Scopus, Web of Science, and Embase databases to identify the related studies published up to February 2021. Human studies have demonstrated an increase in the HIF-1α protein expression in the internal spermatic vein (ISV) of the varicocele testicle. HIF-1α mRNA expression in the seminal plasma was significantly higher in infertile varicocele patient compared with fertile ones. Similarly, most animal studies demonstrated a significant increase in HIF-1α gene and protein expression in varicocele testicular tissue compared with control groups. The studies illustrated that hypoxia followed by increased expression of hypoxia-inducible factor 1-alpha (HIF1-α) mRNA and protein occurs in varicocele disease. Expression of HIF-1α regulates the expression of many genes, including VEGF, p53, GLUT, Bax, and Caspase-3, that could be involved in many of the varicocele pathophysiological effects such as DNA fragmentation and apoptosis of sperm cells. Further studies with a large number of patients are necessary and can provide more definitive evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AI:

Apoptosis index

bHLH:

Basic helix-loop-helix

BV:

Brachial vein

CTGF:

Connective tissue growth factor

ELISA:

Enzyme-linked immunosorbent assay

H&E:

Hematoxylin and eosin staining

HIF1-α:

Hypoxia-inducible factor 1-alpha

HIFs:

Hypoxia-inducible factors

HREs:

Hypoxia response elements

ISV:

Internal spermatic vein

MeSHs:

Medical subject heading

ODD:

Oxygen-dependent degradation domain

PHD:

Hypoxia, prolyl hydroxylase

PRISMA:

Preferred Reported Cases for Systematic Reviews and Meta-Analyzes

pVHL:

Von Hippel-Lindau protein

ROM:

Reactive oxygen metabolite

ROS:

Reactive oxygen species

RT-qPCR:

Real-time polymerase chain reaction

TUNEL:

Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling

VEGF:

Vascular endothelial growth factor

References

  1. Yetkin E, Ozturk S. Dilating vascular diseases: pathophysiology and clinical aspects. Int J Vasc Med. 2018; 2018. https://doi.org/10.1155/2018/9024278.

  2. Alsaikhan B, Alrabeeah K, Delouya G, Zini A. Epidemiology of varicocele. Asian J Androl. 2016;18(2):179–81. https://doi.org/10.4103/1008-682X.172640.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akbay E, Cayan S, Doruk E, Duce M, Bozlu M. The prevalence of varicocele and varicocele-related testicular atrophy in Turkish children and adolescents. BJU Int. 2000;86(4):490–3.

    Article  CAS  Google Scholar 

  4. Liang M, Wen J, Dong Q, Zhao LG, Shi BK. Testicular hypofunction caused by activating p53 expression induced by reactive oxygen species in varicocele rats. Andrologia. 2015;47(10):1175–82. https://doi.org/10.1111/and.12400.

    Article  CAS  PubMed  Google Scholar 

  5. Lara-Cerrillo S, Gual-Frau J, Benet J, Abad C, Prats J, Amengual MJ, García-Peiró A. Microsurgical varicocelectomy effect on sperm telomere length, DNA fragmentation and seminal parameters. Human Fertil. 2020:1–7. https://doi.org/10.1080/14647273.2019.1711204.

  6. Madhusoodanan V, Patel P, Blachman-Braun R, Ramasamy R. Semen parameter improvements after microsurgical subinguinal varicocele repair are durable for more than 12 months. Can Urol Assoc J. 2020; 14(3). https://doi.org/10.5489/cuaj.6047.

  7. Kimura M, Nagao K. Role of varicocele repair for male infertility in the era of assisted reproductive technologies. Rep Med Bio. 2014;13(4):185–92. https://doi.org/10.3978/j.issn.2223-4683.2014.s022.

    Article  Google Scholar 

  8. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678. https://doi.org/10.1038/nrurol.2012.197.

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Sun Y, Wang L, Xu C, Yang Q, Liu B, Liu Z. Hypoxia-induced apoptosis in the bilateral testes of rats with left-sided varicocele: A new way to think about the varicocele. Andrology. 2010;31(3):299–305. https://doi.org/10.2164/jandrol.108.007153.

    Article  Google Scholar 

  10. Ghandehari-Alavijeh R, Tavalaee M, Zohrabi D, Foroozan-Broojeni S, Abbasi H, Nasr-Esfahani MH. Hypoxia pathway has more impact than inflammation pathway on etiology of infertile men with varicocele. Andrologia. 2019;51(2). https://doi.org/10.1111/and.13189.

  11. Kumar H, Choi DK. Hypoxia Inducible factor pathway and physiological adaptation: a cell survival pathway? Mediat Inflamm. 2015;2015: 584758. https://doi.org/10.1155/2015/584758.

    Article  CAS  Google Scholar 

  12. Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005;2005(306):re12. https://doi.org/10.1126/stke.3062005re12.

    Article  PubMed  Google Scholar 

  13. Chen EY, Mazure NM, Cooper JA, Giaccia AJ. Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res. 2001;61(6):2429–33.

    CAS  PubMed  Google Scholar 

  14. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors—similar but not identical. Mol Cells. 2010;29(5):435–42. https://doi.org/10.1007/s10059-010-0067-2.

    Article  CAS  PubMed  Google Scholar 

  15. Gordan JD, Bertout JA, Hu C-J, Diehl JA, Simon MC. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007;11(4):335–47. https://doi.org/10.1016/j.ccr.2007.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goren MR, Kilinc F, Kayaselcuk F, Ozer C, Oguzulgen I, Hasirci E. Effects of experimental left varicocele repair on hypoxia-inducible factor-1α and vascular endothelial growth factor expressions and angiogenesis in rat testis. Andrologia. 2016; 49(2). https://doi.org/10.1111/and.12614.

  17. Maynard M, Ohh M. The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci. 2007;64(16):2170–80. https://doi.org/10.1007/s00018-007-7082-2.

    Article  CAS  PubMed  Google Scholar 

  18. Saint-Martin A, Castañeda-Patlán MC, Robles-Flores M. The Role of Hypoxia-Inducible Factors in Cancer Resistance. J Cell Signal. 2017;2(154):2576–1471.

    Google Scholar 

  19. Kilinc F, Kayaselcuk F, Aygun C, Guvel S, Egilmez T, Ozkardes H. Experimental varicocele induces hypoxia inducible factor-1alpha, vascular endothelial growth factor expression and angiogenesis in the rat testis. J Urol. 2004;172(3):1188–91. https://doi.org/10.1097/01.ju.0000135455.97627.15.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang K, Wang Z, Wang H, Fu Q, Zhang H, Cao Q. Hypoxia-induced apoptosis and mechanism of epididymal dysfunction in rats with left-side varicocele. Andrologia. 2015;48(3):318–24. https://doi.org/10.1111/and.12449.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao W, Liu J, Wang D, Wang Y, Zhang F, Jin G, Yuan C, Wang X, Qin Q. Effect of silencing HIF-1α gene on testicle spermatogenesis function in varicocele rats. Cell Tissue Res. 2019. https://doi.org/10.1007/s00441-019-03064-0.

    Article  PubMed  Google Scholar 

  22. Zhu SM, Rao T, Yang X, Ning JZ, Yu WM, Ruan Y, Yuan R, Li CL, Jiang K, Hu W, et al. Autophagy may play an important role in varicocele. Mol Med Rep. 2017;16(4):5471–9. https://doi.org/10.3892/mmr.2017.7253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology. 2009;24(2):97–106. https://doi.org/10.1152/physiol.00045.2008.

    Article  CAS  PubMed  Google Scholar 

  24. Paick JS, Park K, Kim S, Park H, Kim J, Paick J. Increased expression of hypoxiainducible factor-1 α and connective tissue growth factor accompanied by fibrosis in rat testis with varicocele. Urology. 2012;74(4):S246. https://doi.org/10.1016/j.acuroe.2012.08.005.

    Article  Google Scholar 

  25. Lee JD, Jeng SY, Lee TH. Increased expression of hypoxia-inducible factor-1α in the internal spermatic vein of patients with varicocele. Urology. 2006;175(3):1045–8. https://doi.org/10.1016/S0022-5347(05)00417-9.

    Article  CAS  Google Scholar 

  26. Lee JD, Lai CH, Yan WK, Lee TH. Increased expression of hypoxia-inducible factor-1α and metallothionein in varicocele and varicose veins. Phlebology. 2012;27(8):409–15. https://doi.org/10.1258/phleb.2011.011051.

    Article  PubMed  Google Scholar 

  27. Lee JD, Yang WK, Lee TH. Increased expression of hypoxia-inducible factor-1alpha and Bcl-2 in varicocele and varicose veins. Ann Vasc Surg. 2012;26(8):1100–5. https://doi.org/10.1016/j.avsg.2011.12.014.

    Article  PubMed  Google Scholar 

  28. Moher D, Liberati A, Tetzlaff J, Altman D, Group TP. Preferred reporting items for systematic reviews and meta-analyses the PRISMA Statement. PLoS Med. 2009;6:e1000097.

    Article  Google Scholar 

  29. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5. https://doi.org/10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

  30. Hu W, Zhou PH, Zhang XB, Xu CG, Wang W. Roles of adrenomedullin and hypoxia-inducible factor 1 alpha in patients with varicocele. Andrologia. 2015;47(8):951–7. https://doi.org/10.1111/and.12363.

    Article  CAS  PubMed  Google Scholar 

  31. Hooijmans CR, de Vries R, Leenaars M, Curfs J, Ritskes-Hoitinga M. Improving planning, design, reporting and scientific quality of animal experiments by using the Gold Standard Publication Checklist, in addition to the ARRIVE guidelines. Br J Pharmacol. 2011;162(6):1259–60. https://doi.org/10.1111/j.1476-5381.2010.01128.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo J, Leng W. Theory & practice of systematic review/meta-analysis. Mil Med Sci. 2013.

  33. Wang F, Zhang H, Xu N, Huang N, Tian C, Ye A, Hu G, He J, Zhang Y. A novel hypoxia-induced miR-147a regulates cell proliferation through a positive feedback loop of stabilizing HIF-1α. Cancer Biol Ther. 2016;17(8):790–8. https://doi.org/10.1080/15384047.2016.1195040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chamboredon S, Ciais D, Desroches-Castan A, Savi P, Bono F, Feige J-J, Cherradi N. Hypoxia-inducible factor-1α mRNA: a new target for destabilization by tristetraprolin in endothelial cells. Mol Biol Cell. 2011;22(18):3366–78. https://doi.org/10.1091/mbc.e10-07-0617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54. https://doi.org/10.1038/nrm1366.

    Article  CAS  PubMed  Google Scholar 

  36. Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005;338(1):617–26. https://doi.org/10.1016/j.bbrc.2005.08.111.

    Article  CAS  PubMed  Google Scholar 

  37. Mansouri K, Mostafie A, Rezazadeh D, Shahlaei M, Modarressi MH. New function of TSGA10 gene in angiogenesis and tumor metastasis: a response to a challengeable paradox. Hum Mol Genet. 2016;25(2):233–44. https://doi.org/10.1093/hmg/ddv461.

    Article  CAS  PubMed  Google Scholar 

  38. Hoseinkhani Z, Rastegari-Pouyani M, Oubari F, Mozafari H, Rahimzadeh AB, Maleki A, Amini S, Mansouri K. Contribution and prognostic value of TSGA10 gene expression in patients with acute myeloid leukemia (AML). Pathol Res Pract. 2019;215(3):506–11. https://doi.org/10.1016/j.prp.2019.01.003.

    Article  CAS  PubMed  Google Scholar 

  39. Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev. 2001;11(3):293–9. https://doi.org/10.1016/S0959-437X(00)00193-3.

    Article  CAS  PubMed  Google Scholar 

  40. Nalbandian A, Dettin L, Dym M, Ravindranath N. Expression of vascular endothelial growth factor receptors during male germ cell differentiation in the mouse. Bio Reprod. 2003;69(3):985–94. https://doi.org/10.1095/biolreprod.102.013581.

    Article  CAS  Google Scholar 

  41. Reyes JG, Farias JG, Henríquez-Olavarrieta S, Madrid E, Parraga M, Zepeda AB, Moreno RD. The hypoxic testicle: physiology and pathophysiology. Oxid Med Cell Longev. 2012; 2012. https://doi.org/10.1155/2012/929285.

  42. Korpelainen EI, Karkkainen MJ, Tenhunen A, Lakso M, Rauvala H, Vierula M, Parvinen M, Alitalo K. Overexpression of VEGF in testis and epididymis causes infertility in transgenic mice: evidence for nonendothelial targets for VEGF. J Cell Biol. 1998;143(6):1705–12. https://doi.org/10.1083/jcb.143.6.1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shiraishi K, Naito K. Involvement of vascular endothelial growth factor on spermatogenesis in testis with varicocele. Fertil Steril. 2008;90(4):1313–6. https://doi.org/10.1016/j.fertnstert.2007.08.030.

    Article  PubMed  Google Scholar 

  44. Wang D, Zhao W, Liu J, Wang Y, Yuan C, Zhang F, Jin G, Qin Q. Effects of HIF-1α on Spermatogenesis of Varicocele Rats by Regulating VEGF/PI3K/Akt Signaling Pathway. Reprod Sci. 2020:1–14. https://doi.org/10.1007/s43032-020-00395-0.

  45. Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng J, Li J, Gu Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia. Mol Med Rep. 2019;19(2):783–91. https://doi.org/10.3892/mmr.2018.9713.

    Article  CAS  PubMed  Google Scholar 

  46. Chen M-C, Hsu W-L, Hwang P-A, Chou T-C. Low molecular weight fucoidan inhibits tumor angiogenesis through downregulation of HIF-1/VEGF signaling under hypoxia. Mar Drugs. 2015;13(7):4436–51. https://doi.org/10.3390/md13074436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang T, Suo C, Zheng C, Zhang H. Hypoxia and metabolism in metastasis. Hypoxia and Cancer Metastasis. 2019:87–95. https://doi.org/10.1007/978-3-030-12734-3_6.

  48. Kierans S, Taylor C. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. J Physiol. 2021;599(1):23–37. https://doi.org/10.1113/JP280572.

    Article  CAS  PubMed  Google Scholar 

  49. Greijer AE, van der Wall E. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 2004;57(10):1009–14. https://doi.org/10.1136/jcp.2003.015032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. van de Schepop HAM, De Jong JS, Van Diest PJ, Baak JP. Counting of apoptotic cells: a methodological study in invasive breast cancer. Clin Mol Pathol. 1996;49(4):214. https://doi.org/10.1136/mp.49.4.m214.

    Article  Google Scholar 

  51. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479–89. https://doi.org/10.1016/S0092-8674(00)80434-1.

    Article  CAS  PubMed  Google Scholar 

  52. Li P, Nijhawan D, Wang X. Mitochondrial activation of apoptosis. Cell. 2004;116:S57–61.

    Article  CAS  Google Scholar 

  53. Wei MC, Zong W-X, Cheng EH-Y, Lindsten T, Panoutsakopoulou V, Ross AJ, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292(5517):727–30. https://doi.org/10.1126/science.1059108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fisher D. The p53 tumor suppressor: critical regulator of life & death in cancer. Apoptosis. 2001;6(1):7–15. https://doi.org/10.1023/A:1009659708549.

    Article  CAS  PubMed  Google Scholar 

  55. Zhang J, Jin P, Gong M, Guo J, Fang K, Yi Q, Zhu R. Roles of Fas/FasL-mediated apoptosis and inhibin B in the testicular dysfunction of rats with left-side varicocele. Andrologia. 2018;50(2): e12850. https://doi.org/10.1111/and.12850.

    Article  CAS  Google Scholar 

  56. Sermeus A, Michiels C. Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis. 2011;2(5):e164–e164. https://doi.org/10.1038/cddis.2011.48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang FW, Sun GH, Cheng YY, Chen IC, Chien HH, Wu GJ. Effects of varicocele upon the expression of apoptosis-related proteins. Andrologia. 2010;42(4):225–30. https://doi.org/10.1038/cddis.2011.48.

    Article  CAS  PubMed  Google Scholar 

  58. Sadaghianloo N, Yamamoto K, Bai H, Tsuneki M, Protack CD, Hall MR, Declemy S, Hassen-Khodja R, Madri J, Dardik A. Increased oxidative stress and hypoxia inducible factor-1 expression during arteriovenous fistula maturation. Ann Vasc Surg. 2017;41:225–34. https://doi.org/10.1016/j.avsg.2016.09.014.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stuart JA, Aibueku O, Bagshaw O, Moradi F. Hypoxia inducible factors as mediators of reactive oxygen/nitrogen species homeostasis in physiological normoxia. Med Hypotheses. 2019;129: 109249. https://doi.org/10.1016/j.mehy.2019.109249.

    Article  CAS  PubMed  Google Scholar 

  60. Chandel N, Maltepe E, Goldwasser E, Mathieu C, Simon M, Schumacker P. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci. 1998;95(20):11715–20. https://doi.org/10.1073/pnas.95.20.11715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hayashi Y, Yokota A, Harada H, Huang G. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1α in cancer. Cancer Sci. 2019;110(5):1510. https://doi.org/10.1111/cas.13990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu Q, Wu W, Kuca K. From hypoxia and hypoxia-inducible factors (HIF) to oxidative stress: A new understanding of the toxic mechanism of mycotoxins. Food Chem Toxicol. 2020;135: 110968. https://doi.org/10.1016/j.fct.2019.110968.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.B. designed the study; Z.H and D.R. conducted the publication search and revised manuscript; A.B., S.M., and K.M. wrote the paper and revised the manuscript; S.D. and G.S. edited the paper; K.M. was primary responsible for the final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kamran Mansouri.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, A., Moradi, S., Hoseinkhani, Z. et al. Expression of Hypoxia-Inducible Factor1-α in Varicocele Disease: a Comprehensive Systematic Review. Reprod. Sci. 29, 2731–2743 (2022). https://doi.org/10.1007/s43032-021-00696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00696-y

Keywords

Navigation