Skip to main content

Advertisement

Log in

The Improvement and Clinical Application of Human Oocyte In Vitro Maturation (IVM)

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Oocyte in vitro maturation (IVM) is a technology with a long history that was established before IVF. Although it has been studied extensively, the efficiency of IVM has been poor for almost 30 years. In terms of the benefits of IVM, the efficiency and adoption of IVM are being improved by some notable improvements that have occurred in recent years. The establishment of biphasic IVM is the most important advancement in recent years. Biphasic IVM includes the pre-IVM culturing phase and IVM phase. The CNP-mediated pre-IVM culturing system is specifically tailored for non/minimally stimulated immature oocytes, and its efficiency has been shown. This is the most significant improvement made in recent decades in this area. In the clinic, IVM can be used for PCOS patients to avoid the occurrence of ovarian hyperstimulation syndrome (OHSS). Additionally, this method can solve the reproductive problems of some patients with special diseases (resistant ovary syndrome) that cannot be solved by IVF. In most fertility preservation procedures, oocytes in small antral follicles are lost. However, IVM has the ability to capture this kind of oocyte and save reproductive potential. IVM can be easily combined with fertility preservation strategies that have been applied in the clinic and improve the efficiency of fertility preservation. IVM is a useful and attractive technology and may be used widely worldwide in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This review was based on published data.

References

  1. De Vos M, Smitz J, Thompson JG, Gilchrist RB. The definition of IVM is clear-variations need defining. Hum Reprod. 2016;31:2411–5.

    Article  PubMed  Google Scholar 

  2. Pincus GSB. Unfertilized human tubal ova. Anat Rec. 1937;69:163–9.

    Article  Google Scholar 

  3. Rock JMMF. In vitro fertilization and cleavage of human ovarian eggs. Science. 1946;100:105–7.

    Article  Google Scholar 

  4. Menkin MFRJ. In vitro fertilization and cleavage of human ovarian eggs. Am J Obstet Gynecol. 1948;55:440–52.

    Article  CAS  PubMed  Google Scholar 

  5. Edwards RG. Maturation in vitro of human ovarian oöcytes. Lancet. 1965;2:926–9.

    Article  CAS  PubMed  Google Scholar 

  6. Edwards RG, Donahue RP, Baramki TA, Jones HW Jr. Preliminary attempts to fertilize human oocytes matured in vitro. Am J Obstet Gynecol. 1966;96:192–200.

    Article  CAS  PubMed  Google Scholar 

  7. Edwards RG, Bavister BD, Steptoe PC. Early stages of fertilization in vitro of human oocytes matured in vitro. Nature. 1969;221:632–5.

    Article  CAS  PubMed  Google Scholar 

  8. Cha KY, Koo JJ, Ko JJ, Choi DH, Han SY, Yoon TK. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril. 1991;55:109–13.

    Article  CAS  PubMed  Google Scholar 

  9. Trounson A, Wood C, Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril. 1994;62:353–62.

    Article  CAS  PubMed  Google Scholar 

  10. Sauerbrun-Cutler MT, Vega M, Keltz M, McGovern PG. In vitro maturation and its role in clinical assisted reproductive technology. Obstet Gynecol Surv. 2015;70:45–57.

    Article  PubMed  Google Scholar 

  11. Walls ML, Hunter T, Ryan JP, Keelan JA, Nathan E, Hart RJ. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum Reprod. 2015;30:88–96.

    Article  CAS  PubMed  Google Scholar 

  12. Edwards RG. Meiosis in ovarian oocytes of adult mammals. Nature. 1962;196:446–50.

    Article  Google Scholar 

  13. Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21:427–54.

    Article  CAS  PubMed  Google Scholar 

  14. Ho V, Pham TD, Le AH, Ho TM, Vuong LN. Live birth rate after human chorionic gonadotropin priming in vitro maturation in women with polycystic ovary syndrome. J Ovarian Res. 2018;11:70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ho V, Braam SC, Pham TD, Mol BW, Vuong LN. The effectiveness and safety of in vitro maturation of oocytes versus in vitro fertilization in women with a high antral follicle count. Hum Reprod. 2019;34:1055–64.

    Article  PubMed  Google Scholar 

  16. Franciosi F, Coticchio G, Lodde V, Tessaro I, Modina SC, Fadini R, et al. Natriuretic peptide precursor C delays meiotic resumption and sustains gap junction-mediated communication in bovine cumulus-enclosed oocytes. Biol Reprod. 2014;91:61.

    Article  PubMed  Google Scholar 

  17. Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, et al. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction. 2016;152:R143–57.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ. Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science. 2010;330:366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsuji T, Kiyosu C, Akiyama K, Kunieda T. CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Mol Reprod Dev. 2012;79:795–802.

    Article  CAS  PubMed  Google Scholar 

  20. Norris RP, Ratzan WJ, Freudzon M, Mehlmann LM, Krall J, Movsesian MA, et al. Cyclic GMP from the surrounding somatic cells regulates cyclic AMP and meiosis in the mouse oocyte. Development. 2009;136:1869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Degerman E, Belfrage P, Manganiello VC. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem. 1997;272:6823–6.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Yang Y, Liu W, Chen Q, Wang H, Wang X, et al. Brain natriuretic peptide and C-type natriuretic peptide maintain porcine oocyte meiotic arrest. J Cell Physiol. 2015;230:71–81.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang J, Wei Q, Cai J, Zhao X, Ma B. Effect of C-Type Natriuretic Peptide on Maturation and Developmental Competence of Goat Oocytes Matured In Vitro. PLoS One. 2015;10:e0132318.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang T, Zhang C, Fan X, Li R, Zhang J. Effect of C-type natriuretic peptide pretreatment on in vitro bovine oocyte maturation. In Vitro Cell Dev Biol Anim. 2017;53:199–206.

  25. Zhong Y, Lin J, Liu X, Hou J, Zhang Y, Zhao X. C-Type natriuretic peptide maintains domestic cat oocytes in meiotic arrest. Reprod Fertil Dev. 2015. https://doi.org/10.1071/RD14425.

  26. Romero S, Sánchez F, Lolicato F, Van Ranst H, Smitz J. Immature Oocytes from Unprimed Juvenile Mice Become a Valuable Source for Embryo Production When Using C-Type Natriuretic Peptide as Essential Component of Culture Medium. Biol Reprod. 2016;95:64.

    Article  PubMed  Google Scholar 

  27. Santiquet NW, Greene AF, Becker J, Barfield JP, Schoolcraft WB, Krisher RL. A pre-in vitro maturation medium containing cumulus oocyte complex ligand-receptor signaling molecules maintains meiotic arrest, supports the cumulus oocyte complex and improves oocyte developmental competence. Mol Hum Reprod. 2017;23:594–606.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao Y, Liao X, Krysta AE, Bertoldo MJ, Richani D, Gilchrist RB. Capacitation IVM improves cumulus function and oocyte quality in minimally stimulated mice. J Assist Reprod Genet. 2020;37:77–88.

    Article  CAS  PubMed  Google Scholar 

  29. Sánchez F, Lolicato F, Romero S, De Vos M, Van Ranst H, Verheyen G, et al. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum Reprod. 2017;32:2056–68.

    Article  PubMed  Google Scholar 

  30. Sanchez F, Le AH, Ho V, Romero S, Van Ranst H, De Vos M, et al. Biphasic in vitro maturation (CAPA-IVM) specifically improves the developmental capacity of oocytes from small antral follicles. J Assist Reprod Genet. 2019;36:2135–44.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vuong LN, Le AH, Ho V, Pham TD, Sanchez F, Romero S, et al. Live births after oocyte in vitro maturation with a prematuration step in women with polycystic ovary syndrome. J Assist Reprod Genet. 2020;37:347–57.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vuong LN, Ho V, Ho TM, Dang VQ, Phung TH, Giang NH, et al. In-vitro maturation of oocytes versus conventional IVF in women with infertility and a high antral follicle count: a randomized non-inferiority controlled trial. Hum Reprod. 2020;35:2537–47.

    Article  CAS  PubMed  Google Scholar 

  33. Azziz R, Marin C, Hoq L, Badamgarav E, Song P. Health care-related economic burden of the polycystic ovary syndrome during the reproductive life span. J Clin Endocrinol Metab. 2005;90:4650–8.

    Article  CAS  PubMed  Google Scholar 

  34. Archer JS, Chang RJ. Hirsutism and acne in polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol. 2004;18:737–54.

    Article  PubMed  Google Scholar 

  35. Tannus S, Hatirnaz S, Tan J, Ata B, Tan SL, Hatirnaz E, et al. Predictive factors for live birth after in vitro maturation of oocytes in women with polycystic ovary syndrome. Arch Gynecol Obstet. 2018;297:199–204.

    Article  PubMed  Google Scholar 

  36. Hiura H, Obata Y, Komiyama J, Shirai M, Kono T. Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells. 2006;11:353–61.

    Article  CAS  PubMed  Google Scholar 

  37. Lucifero D, Mann MR, Bartolomei MS, Trasler JM. Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet. 2004;13:839–49.

    Article  CAS  PubMed  Google Scholar 

  38. Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, et al. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod. 2019;34:1640–9.

    Article  CAS  PubMed  Google Scholar 

  39. Mostinckx L, Segers I, Belva F, Buyl R, Santos-Ribeiro S, Blockeel C, et al. Obstetric and neonatal outcome of ART in patients with polycystic ovary syndrome: IVM of oocytes versus controlled ovarian stimulation. Hum Reprod. 2019;34:1595–607.

    Article  CAS  PubMed  Google Scholar 

  40. Belva F, Roelants M, Vermaning S, Desmyttere S, De Schepper J, Bonduelle M, et al. Growth and other health outcomes of 2-year-old singletons born after IVM versus controlled ovarian stimulation in mothers with polycystic ovary syndrome. Hum Reprod Open. 2020;2020:hoz043.

    PubMed  PubMed Central  Google Scholar 

  41. Jones GS, De Moraes-Ruehsen M. A new syndrome of amenorrhae in association with hypergonadotropism and apparently normal ovarian follicular apparatus. Am J Obstet Gynecol. 1969;104:597–600.

    Article  CAS  PubMed  Google Scholar 

  42. Flageole C, Toufaily C, Bernard DJ, Ates S, Blais V, Chénier S, et al. Successful in vitro maturation of oocytes in a woman with gonadotropin-resistant ovary syndrome associated with a novel combination of FSH receptor gene variants: a case report. J Assist Reprod Genet. 2019;36:425–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Conway GS, Conway E, Walker C, Hoppner W, Gromoll J, Simoni M. Mutation screening and isoform prevalence of the follicle stimulating hormone receptor gene in women with premature ovarian failure, resistant ovary syndrome and polycystic ovary syndrome. Clin Endocrinol. 1999;51:97–9.

    Article  CAS  Google Scholar 

  44. Grynberg M, Peltoketo H, Christin-Maître S, Poulain M, Bouchard P, Fanchin R. First birth achieved after in vitro maturation of oocytes from a woman endowed with multiple antral follicles unresponsive to follicle-stimulating hormone. J Clin Endocrinol Metab. 2013;98:4493–8.

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Pan P, Yuan P, Qiu Q, Yang D. Successful live birth in a woman with resistant ovary syndrome following in vitro maturation of oocytes. J Ovarian Res. 2016;9:54.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Galvão A, Segers I, Smitz J, Tournaye H, De Vos M. In vitro maturation (IVM) of oocytes in patients with resistant ovary syndrome and in patients with repeated deficient oocyte maturation. J Assist Reprod Genet. 2018;35:2161–71.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lonergan P, Fair T. Maturation of Oocytes in Vitro. Annu Rev Anim Biosci. 2016;4:255–68.

    Article  CAS  PubMed  Google Scholar 

  48. Grynberg M, Poulain M, le Parco S, Sifer C, Fanchin R, Frydman N. Similar in vitro maturation rates of oocytes retrieved during the follicular or luteal phase offer flexible options for urgent fertility preservation in breast cancer patients. Hum Reprod. 2016;31:623–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sonigo C, Le Conte G, Boubaya M, Ohanyan H, Pressé M, El Hachem H, et al. Priming Before In Vitro Maturation Cycles in Cancer Patients Undergoing Urgent Fertility Preservation: a Randomized Controlled Study. Reprod Sci. 2020;27:2247–56.

    Article  CAS  PubMed  Google Scholar 

  50. Creux H, Monnier P, Son WY, Buckett W. Thirteen years’ experience in fertility preservation for cancer patients after in vitro fertilization and in vitro maturation treatments. J Assist Reprod Genet. 2018;35:583–92.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Berwanger AL, Finet A, El Hachem H, le Parco S, Hesters L, Grynberg M. New trends in female fertility preservation: in vitro maturation of oocytes. Future Oncol. 2012;8:1567–73.

    Article  CAS  PubMed  Google Scholar 

  52. Maman E, Meirow D, Brengauz M, Raanani H, Dor J, Hourvitz A. Luteal phase oocyte retrieval and in vitro maturation is an optional procedure for urgent fertility preservation. Fertil Steril. 2011;95:64–7.

    Article  PubMed  Google Scholar 

  53. Creux H, Monnier P, Son WY, Tulandi T, Buckett W. Immature oocyte retrieval and in vitro oocyte maturation at different phases of the menstrual cycle in women with cancer who require urgent gonadotoxic treatment. Fertil Steril. 2017;107:198–204.

    Article  PubMed  Google Scholar 

  54. Cavilla JL, Kennedy CR, Byskov AG, Hartshorne GM. Human immature oocytes grow during culture for IVM. Hum Reprod. 2008;23:37–45.

    Article  CAS  PubMed  Google Scholar 

  55. Revel A, Revel-Vilk S, Aizenman E, Porat-Katz A, Safran A, Ben-Meir A, et al. At what age can human oocytes be obtained. Fertil Steril. 2009;92:458–63.

    Article  PubMed  Google Scholar 

  56. Imesch P, Scheiner D, Xie M, Fink D, Macas E, Dubey R, et al. Developmental potential of human oocytes matured in vitro followed by vitrification and activation. J Ovarian Res. 2013;6:30.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Prasath EB, Chan ML, Wong WH, Lim CJ, Tharmalingam MD, Hendricks M, et al. First pregnancy and live birth resulting from cryopreserved embryos obtained from in vitro matured oocytes after oophorectomy in an ovarian cancer patient. Hum Reprod. 2014;29:276–8.

    Article  CAS  PubMed  Google Scholar 

  58. Segers I, Mateizel I, Van Moer E, Smitz J, Tournaye H, Verheyen G, et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising "ex vivo" method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet. 2015;32:1221–31.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Uzelac PS, Delaney AA, Christensen GL, Bohler HC, Nakajima ST. Live birth following in vitro maturation of oocytes retrieved from extracorporeal ovarian tissue aspiration and embryo cryopreservation for 5 years. Fertil Steril. 2015;104:1258–60.

    Article  PubMed  Google Scholar 

  60. Son WY, Tan SL. Laboratory and embryological aspects of hCG-primed in vitro maturation cycles for patients with polycystic ovaries. Hum Reprod Update. 2010;16:675–89.

    Article  CAS  PubMed  Google Scholar 

  61. Chian RC, Cao YX. In vitro maturation of immature human oocytes for clinical application. Methods Mol Biol. 2014;1154:271–88.

    Article  PubMed  Google Scholar 

  62. Wirleitner B, Okhowat J, Vištejnová L, Králíčková M, Karlíková M, Vanderzwalmen P, et al. Relationship between follicular volume and oocyte competence, blastocyst development and live-birth rate: optimal follicle size for oocyte retrieval. Ultrasound Obstet Gynecol. 2018;51:118–25.

    Article  CAS  PubMed  Google Scholar 

  63. Rosen MP, Shen S, Dobson AT, Rinaudo PF, McCulloch CE, Cedars MI. A quantitative assessment of follicle size on oocyte developmental competence. Fertil Steril. 2008;90:684–90.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wilken-Jensen HN, Kristensen SG, Jeppesen JV, Yding AC. Developmental competence of oocytes isolated from surplus medulla tissue in connection with cryopreservation of ovarian tissue for fertility preservation. Acta Obstet Gynecol Scand. 2014;93:32–7.

    Article  PubMed  Google Scholar 

  65. Yin H, Jiang H, Kristensen SG, Andersen CY. Vitrification of in vitro matured oocytes collected from surplus ovarian medulla tissue resulting from fertility preservation of ovarian cortex tissue. J Assist Reprod Genet. 2016;33:741–6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nikiforov D, Junping C, Cadenas J, Shukla V, Blanshard R, Pors SE, et al. Improving the maturation rate of human oocytes collected ex vivo during the cryopreservation of ovarian tissue. J Assist Reprod Genet. 2020;37:891–904.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Park CW, Lee SH, Yang KM, Lee IH, Lim KT, Lee KH, et al. Cryopreservation of in vitro matured oocytes after ex vivo oocyte retrieval from gynecologic cancer patients undergoing radical surgery. Clin Exp Reprod Med. 2016;43:119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chian RC, Gilbert L, Huang JY, Demirtas E, Holzer H, Benjamin A, et al. Live birth after vitrification of in vitro matured human oocytes. Fertil Steril. 2009;91:372–6.

    Article  CAS  PubMed  Google Scholar 

  69. Chian RC, Huang JY, Gilbert L, Son WY, Holzer H, Cui SJ, et al. Obstetric outcomes following vitrification of in vitro and in vivo matured oocytes. Fertil Steril. 2009;91:2391–8.

    Article  PubMed  Google Scholar 

  70. Ellenbogen A, Shavit T, Shalom-Paz E. IVM results are comparable and may have advantages over standard IVF. Facts Views Vis Obgyn. 2014;6:77–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Segers I, Bardhi E, Mateizel I, Van Moer E, Schots R, Verheyen G, et al. Live births following fertility preservation using in-vitro maturation of ovarian tissue oocytes. Hum Reprod. 2020;35:2026–36.

    Article  PubMed  Google Scholar 

  72. Fortin A, Azaïs H, Uzan C, Lefebvre G, Canlorbe G, Poirot C. Laparoscopic ovarian tissue harvesting and orthotopic ovarian cortex grafting for fertility preservation: less is more. Fertil Steril. 2019;111:408–10.

    Article  PubMed  Google Scholar 

  73. Ruan X, Du J, Korell M, Kong W, Lu D, Jin F, et al. Case report of the first successful cryopreserved ovarian tissue retransplantation in China. Climacteric. 2018;21:613–6.

    Article  CAS  PubMed  Google Scholar 

  74. Pacheco F, Oktay K. Current Success and Efficiency of Autologous Ovarian Transplantation: A Meta-Analysis. Reprod Sci. 2017;24:1111–20.

    Article  PubMed  Google Scholar 

  75. Dolmans MM, Marinescu C, Saussoy P, Van Langendonckt A, Amorim C, Donnez J. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010;116:2908–14.

    Article  CAS  PubMed  Google Scholar 

  76. Wang X, Gook DA, Walters KA, Anazodo A, Ledger WL, Gilchrist RB. Improving fertility preservation for girls and women by coupling oocyte in vitro maturation with existing strategies. Womens Health (Lond). 2016;12:275–8.

    Article  CAS  Google Scholar 

  77. Stern CJ, Gook D, Hale LG, Agresta F, Oldham J, Rozen G, et al. Delivery of twins following heterotopic grafting of frozen-thawed ovarian tissue. Hum Reprod. 2014;29:1828.

    Article  CAS  PubMed  Google Scholar 

  78. McLaughlin M, Albertini DF, Wallace W, Anderson RA, Telfer EE. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24:135–42.

    Article  CAS  PubMed  Google Scholar 

  79. Ritter LJ, Sugimura S, Gilchrist RB. Oocyte induction of EGF responsiveness in somatic cells is associated with the acquisition of porcine oocyte developmental competence. Endocrinology. 2015;156:2299–312.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by the Special Funds for Clinical Medicine Research of the Chinese Medical Association—Research and Development Project for Young Physicians in Reproductive Medicine (No. 18010080737) and Scientific Research Staring Foundation for the Returned Overseas Scholars, Tongji Hospital (No. 2020HGRY004).

Author information

Authors and Affiliations

Authors

Contributions

XG, HL, and YZ performed literature searches and selected the studies. XG and HL prepared the first draft of the manuscript. YZ created the original idea and structure for the paper and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yiqing Zhao.

Ethics declarations

Ethics Approval

This review study was based on published work and therefore did not require approval from an institutional committee.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xueqi Gong and Hemei Li are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Li, H. & Zhao, Y. The Improvement and Clinical Application of Human Oocyte In Vitro Maturation (IVM). Reprod. Sci. 29, 2127–2135 (2022). https://doi.org/10.1007/s43032-021-00613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00613-3

Keywords

Navigation