Skip to main content

Advertisement

Log in

The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants

  • Review
  • Published:
aBIOTECH Aims and scope Submit manuscript

Abstract

Targeted gene manipulation is highly desirable for fundamental plant research, plant synthetic biology, and molecular breeding. The clustered regularly interspaced short palindromic repeats-associated (Cas) nuclease is a revolutionary tool for genome editing, and has received snowballing popularity for gene knockout applications in diverse organisms including plants. Recently, the nuclease-dead Cas (dCas) proteins have been repurposed as programmable transcriptional regulators through translational fusion with portable transcriptional repression or activation domains, which has paved new ways for flexible and multiplex control over the activities of target genes of interest without the need to generate DNA lesions. Here, we review the most important breakthroughs of dCas transcriptional regulators in non-plant organisms and recent accomplishments of this growing field in plants. We also provide perspectives on future development directions of dCas transcriptional regulators in plant research in hope to stimulate their quick evolution and broad applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe K, Ichikawa H (2016) Gene overexpression resources in cereals for functional genomics and discovery of useful genes. Front Plant Sci 7:1359

    PubMed  PubMed Central  Google Scholar 

  • Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911

    PubMed  PubMed Central  Google Scholar 

  • Braun CJ, Bruno PM, Horlbeck MA, Gilbert LA, Weissman JS, Hemann MT (2016) Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. Proc Natl Acad Sci USA 113:E3892–E3900

    CAS  PubMed  Google Scholar 

  • Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EPR, Lin S, Kiani S, Guzman CD, Wiegand DJ, Ter-Ovanesyan D, Braff JL, Davidsohn N, Housden BE, Perrimon N, Weiss R, Aach J, Collins JJ, Church GM (2015) Highly efficient Cas9-mediated transcriptional programming. Nat Methods 12:326–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, Haque SJ, Cecchi RJ, Kowal EJK, Buchthal J, Housden BE, Perrimon N, Collins JJ, Church GM (2016) Comparison of Cas9 activators in multiple species. Nat Methods 13:563–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697

    CAS  PubMed  Google Scholar 

  • Cheng AW, Wang H, Yang H, Shi L, Katz Y, Theunissen TW, Rangarajan S, Shivalila CS, Dadon DB, Jaenisch R (2013) Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:1163–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, Rooryck C, Teichmann M, Rousseau E, Lamrissi-Garcia I, Guyonnet-Duperat V, Bibeyran A, Lalanne M, Prouzet-Mauléon V, Turcq B, Ged C, Blouin JM, Richard E, Dabernat S, Moreau-Gaudry F, Bedel A (2019) CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 10:1136

    PubMed  PubMed Central  Google Scholar 

  • Ewen-Campen B, Yang-Zhou D, Fernandes VR, González DR, Liu LP, Tao R, Ren X, Sun J, Hu Y, Zirin J, Mohr SE, Ni JQ, Perrimon N (2017) Optimized strategy for in vivo Cas9-activation in Drosophila. Proc Natl Acad Sci USA 114:9409–9414

    CAS  PubMed  Google Scholar 

  • Farzadfard F, Perli SD, Lu TK (2013) Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth Biol 2:604–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521

    CAS  PubMed  Google Scholar 

  • Gallego-Bartolomé J, Gardiner J, Liu W, Papikian A, Ghoshal B, Kuo HY, Zhao JM, Segal DJ, Jacobsen SE (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci USA 115:E2125–E2134

    PubMed  Google Scholar 

  • Gasperini M, Hill AJ, McFaline-Figueroa JL, Martin B, Kim S, Zhang MD, Jackson D, Leith A, Schreiber J, Nobel WS, Trapnell C, Ahituv N, Shendure J (2019) A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176:377–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karve R, Liu W, Willet SG, Torri KU, Shpak ED (2011) The presence of multiple introns is essential for ERECTA expression in Arabidopsis. RNA 17:1907–1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK (2019) Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol 37:276–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588

    CAS  PubMed  Google Scholar 

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawhorn IE, Ferreira JP, Wang CL (2014) Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53. PLoS One 9:e113232

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li JF (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Han J, Chen Z, Wu H, Dong H, Nie G (2017) Engineering cell signaling using tunable CRISPR-Cpf1-based transcription factors. Nat Commun 8:2095

    PubMed  PubMed Central  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    PubMed  PubMed Central  Google Scholar 

  • Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y (2018) Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALE-Act systems. Mol Plant 11:245–256

    CAS  PubMed  Google Scholar 

  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakade S, Yamamoto T, Sakuma T (2017) Cas9, Cpf1 and C2c1/2/3-what’s next? Bioengineered 8:265–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:729

    PubMed  PubMed Central  Google Scholar 

  • Park JJ, Dempewolf E, Zhang W, Wang ZY (2017) RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis. PLoS One 12:e0179410

    PubMed  PubMed Central  Google Scholar 

  • Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo BM, Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petolino JF, Davies JP (2013) Designed transcriptional regulators for trait development. Plant Sci 201:128–136

    PubMed  Google Scholar 

  • Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, Polo JM, Ford E, Lister R (2018) A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res 28:1193–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589

    CAS  PubMed  Google Scholar 

  • Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi A, Kontarakis Z, Gerri C, Nolte H, Holer S, Kruger M, Stainier DY (2015) Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233

    CAS  PubMed  Google Scholar 

  • Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, Vaimberg EW, Goodale A, Root DE, Piccioni F, Doench JG (2018) Optimized libraries for CRIPSR-Cas9 genetic screens with multiple modalities. Nat Commun 9:5416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tak YE, Kleinstiver BP, Nuñez JK, Hsu JY, Horng JE, Gong J, Weissman JS, Joung JK (2017) Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors. Nat Methods 14:1163–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018

    CAS  PubMed  Google Scholar 

  • Vazquez-Vilar M, Bernabé-Orts JM, Fernandez-Del-Carmen A, Ziarsolo P, Blanca J, Granell A, Orzaez D (2016) A modular toolbox for gRNA-Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods 12:10

    PubMed  PubMed Central  Google Scholar 

  • Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    CAS  PubMed  Google Scholar 

  • Xu X, Qi LS (2019) A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J Mol Biol 431:34–47

    CAS  PubMed  Google Scholar 

  • Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–350

    CAS  PubMed  Google Scholar 

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35:31–34

    CAS  PubMed  Google Scholar 

  • Zhang D, Li Z, Li JF (2016) Targeted gene manipulation in plants using the CRISPR/Cas technology. J Genet Genom 43:251–262

    Google Scholar 

  • Zhang N, Zhang D, Chen SL, Gong BQ, Guo Y, Xu L, Zhang XN, Li JF (2018a) Engineering artificial microRNAs for multiplex gene silencing and simplified transgenic screen. Plant Physiol 178:989–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang W, Shan L, Han L, Ma S, Zhang Y, Hao B, Lin Y, Rong Z (2018b) Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell 9:380–383

    CAS  PubMed  Google Scholar 

  • Zhou H, Liu J, Zhou C, Gao N, Rao Z, Li H, Hu X, Li C, Yao X, Shen X, Sun Y, Wei Y, Liu F, Ying W, Zhang J, Tang C, Zhang X, Xu H, Shi L, Cheng L, Huang P, Yang H (2018) In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR-dCas9-activator transgenic mice. Nat Neurosci 21:440–446

    CAS  PubMed  Google Scholar 

  • Zorrilla-López U, Masip G, Arjó G, Bai C, Banakar R, Bassie L, Berman J, Farré G, Miralpeix B, Pérez-Massot E, Sabalza M, Sanahuja G, Vamvaka E, Twyman RM, Christou P, Zhu C, Capell T (2013) Engineering metabolic pathways in plants by multigene transformation. Int J Dev Biol 57:565–576

    PubMed  Google Scholar 

Download references

Acknowledgements

The work in the laboratory of JF Li is supported by the National Natural Science Foundation of China (Grant Nos. 31570276 and 31770295). We apologize to those whose work could not be cited due to the space constraint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Feng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xiong, X. & Li, JF. The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants. aBIOTECH 1, 32–40 (2020). https://doi.org/10.1007/s42994-019-00003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42994-019-00003-z

Keywords

Navigation