Skip to main content
Log in

Mitigation of salt stress with Azospirillium and Azotobacter inoculation in maize (Zea mays L.)

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

A pot experiment was designed to study the effect of Azotobacter and Azospirillum inoculation on the growth parameters (root shoot fresh weight, dry weight and length), level of enzymatic and non-enzymatic antioxidants, photosynthetic pigments, water status, level of osmolytes and metaxylem vessel elements (MVE) of maize roots under control conditions as well as under salt stress conditions (100 mM and 150 mM NaCl). The results revealed that stress conditions increased the level of antioxidants, antioxidant enzyme activities and some osmolytes like total soluble sugars and proline. On the contrary, growth parameters, total soluble proteins, photosynthetic pigments and MVE number and area were reduced under salt stress. Inoculation with Azotobacter and Azospirillum improved the growth parameters, increased the level of osmolytes, antioxidants, activities of antioxidant enzymes, photosynthetic pigments and MVE area and number, not only under control conditions but also under stress conditions. It was observed that bacteria inoculation counter acted on the harmful effects of salt stress. Therefore to conclude, inoculation of seeds with microbes before sowing in salt affected soils can mitigate the negative effects of salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed A, Hasnain S (2014) Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria. Pol J Microbiol 63:261–266

    Article  PubMed  Google Scholar 

  • Akram M, Ashraf MY, Ahmad R, Waraich EA, Iqbal J, Mohsan M (2010) Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pak J Bot 42(1):141–154

    CAS  Google Scholar 

  • Alam M, Juraimi AS, Rafii M, Abdul Hamid A (2015) Effect of salinity on biomass yield and physiological and stem-root anatomical characteristics of purslane (Portulaca oleracea L.) accessions. BioMed Res Int 2015:1–15

    Google Scholar 

  • Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillum brasilense Sp-248 on the response of wheat to seawater irrigation. Saudi J Biol Sci 16:101–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Asghari B, Khademian R, Sedaghati B (2020) Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Sci Hortic 263:109132

    Article  CAS  Google Scholar 

  • Balabaa SI, Zaki AY, Elshamy AM (1974) Total favonoids and rutin content of the different organs of Sophora japonica L. J Assoc Offic Anal Chem 57:752–755

    Google Scholar 

  • Bandyopadhyay P, Bhuyan SK, Yadava PK, Varma A, Tuteja N (2017) Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma 254(2):617–626

    Article  PubMed  Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15(3):413–428

    Article  Google Scholar 

  • Bastin M, Ünlüer O (1972) Effect of actinomycin D on the formation of enzymes in Jerusalem artichoke tuber slices. Planta 102(4):357–361

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Calzavara AK, Paiva PHG, Gabriel LC, Oliveira ALM, Milani K, Oliveira HC, Bianchini E, Pimenta JA, de Oliveira MCN, Dias-Pereira J, Stolf-Moreira R (2018) Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels. Plant Biol 20(5):870–878

    Article  CAS  PubMed  Google Scholar 

  • Carmen Orozco-Mosqueda M, Glick BR, Santoyo G (2020) ACC deaminase in plant growth-promoting bacteria (PGPB): an efficient mechanism to counter salt stress in crops. Microbiol Res 235:1264

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129(4):1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Tavasolee A, Ghassemi-Golezani K, Torabian S, Monirifar H, Rahmani HA (2020) Growth-promoting bacteria and natural regulators mitigate salt toxicity and improve rapeseed plant performance. Protoplasma 257(4):1035–1047

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57(12):1332–1334

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    Article  CAS  PubMed  Google Scholar 

  • Jha Y, Subramanian RB (2013) Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chil J Agric Res 73(3):213–219

    Article  Google Scholar 

  • Khalid M, Bilal M, Hassani D, Iqbal HM, Wang H, Huang D (2017) Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot Stud 58:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01216

    Article  PubMed  PubMed Central  Google Scholar 

  • Latef AAHA, Alhmad MFA, Kordrostami M, Abo-Baker ABAE, Zakir A (2020) Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul 39(3):1293–1306

    Article  Google Scholar 

  • Li HQ, Jiang XW (2017) Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ J Plant Physiol 64(2):235–241

    Article  CAS  Google Scholar 

  • Lobell DB, Deines JM, Di Tommaso S (2020) Changes in the drought sensitivity of US maize yields. Nat Food 1(11):729–735

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Machado R, Serralheiro R (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soilsalinization. Horticulturae 3:30

    Article  Google Scholar 

  • Mazhar R, Ilyas N, Saeed M, Bibi F, Batool N (2016) Biocontrol and salinity tolerance potential of Azospirillum lipoferum and its inoculation effect in wheat crop. Int J Agric Biol 18:494–500

    Article  CAS  Google Scholar 

  • Mokrani S, Nabti EH, Cruz C (2020) Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Appl Sci 10(20):7025

    Article  CAS  Google Scholar 

  • Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Ahmed AH (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32

    Article  CAS  PubMed  Google Scholar 

  • Pereyra MA, Garcia P, Colabelli MN, Barassi CA, Creus CM (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97

    Article  Google Scholar 

  • Puvanitha S, Mahendran S (2017) Effect of salinity on plant height, shoot and root dry weight of selected rice cultivars. Sch J Agric Vet Sci 4:126–131

    Google Scholar 

  • Riffat ALIA, Sajid M, Ahmad A (2020) Alleviation of adverse effects of salt stress on growth of maize (Zea mays) by sulfur supplementation. Pak J Bot 52(3):763–773

    Article  CAS  Google Scholar 

  • Roe JH, Kuether CA (1943) The determination of ascorbic acid in whole blood and urine through the 2, 4-dinitrophenylhydrazine derivavative of dehydroascorbic acid. J Biol Chem 147:399–407

    Article  CAS  Google Scholar 

  • Romero AM, Vega D, Correa OS (2014) Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Appl Soil Ecol 82:38–43

    Article  Google Scholar 

  • Shannon LM, Kay E, Lew JY (1966) Peroxidase isozymes from horseradish roots I. Isolation and physical properties. J Biol Chem 241(9):2166–2172

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  CAS  PubMed  Google Scholar 

  • Swain T, Hillis WE (1959) The phenolic constituents of Prunus domestica. I.—the quantitative analysis of phenolic constituents. J Sci Food Agric 10(1):63–68

    Article  CAS  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14(4):605–611

    Article  CAS  PubMed  Google Scholar 

  • Yildirim ERTAN, Turan METIN, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Roumanian Biotechnol Lett 13:3933–3943

    Google Scholar 

  • Yildirim E, Turan M, Ekinci M, Dursun A, Cakmakci R (2011) Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Sci Res Essays 6(20):4389–4396

    Article  Google Scholar 

  • Zahra N, Raza ZA, Mahmood S (2020) Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2020200072

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contribution of Dr. Jupinder Kaur (Microbiologist) for providing the bacterial cultures and Dr. Surinder K Sandhu (Principal Maize Breeder) for the provision of seeds of maize varieties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gagandeep Kaur Chahal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahal, G.K., Kaur, A. & Ghai, N. Mitigation of salt stress with Azospirillium and Azotobacter inoculation in maize (Zea mays L.). CEREAL RESEARCH COMMUNICATIONS 50, 915–927 (2022). https://doi.org/10.1007/s42976-022-00252-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00252-7

Keywords

Navigation