Skip to main content
Log in

Building some bridges among various experimental designs

  • Research Article
  • Published:
Journal of the Korean Statistical Society Aims and scope Submit manuscript

Abstract

Designing their experiments is the significant problem that experimenters face. Maximin distance designs, supersaturated designs, minimum aberration designs, uniform designs, minimum moment designs and orthogonal arrays are arguably the most exceedingly used designs for many real-life experiments. From different perspectives, several criteria have been proposed for constructing these designs for investigating quantitative or qualitative factors. Each of those criteria has its pros and cons and thus an optimal criterion does not exist, which may confuse investigators searching for a suitable criterion for their experiment. Some logical questions are now arising, such as are these designs consistent, can an optimal design via a specific criterion perform well based on another criterion and can an optimal design for screening quantitative factors be optimal for qualitative factors? Through theoretical justifications, this paper tries to answer these interesting questions by building some bridges among these designs. Some conditions under which these designs agree with each other are discussed. These bridges can be used to select a suitable criterion for studying some hard problems effectively, such as detection of (combinatorial/geometrical) non-isomorphism among designs and construction of optimal designs. Benchmarks for reducing the computational complexity are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Booth, K. H. V., & Cox, D. R. (1962). Some systematic supersaturated designs. Technometrics, 4, 489–495.

    MathSciNet  MATH  Google Scholar 

  • Chen, W., Qi, Z. F., & Zhou, Y. D. (2015). Constructing uniform designs under mixture discrepancy. Statistics and Probability Letters, 97, 76–82.

    MathSciNet  MATH  Google Scholar 

  • Cheng, C. S. (1997). \(E(s^2)\)-optimal supersaturated designs. Statistica Sinica, 7, 929–939.

    MathSciNet  MATH  Google Scholar 

  • Cheng, C. S., Deng, L. Y., & Tang, B. (2002). Generalized minimum aberration and design efficiency for nonregular fractional factorial designs. Statistica Sinica, 12, 991–1000.

    MathSciNet  MATH  Google Scholar 

  • Cheng, C. S., Steinberg, D. M., & Sun, D. X. (1999). Minimum aberration and model robustness for two-level fractional factorial designs. Journal of the Royal Statistical Society: Series, 61, 85–93.

    MathSciNet  MATH  Google Scholar 

  • Cheng, S.-W., & Ye, K. Q. (2004). Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. The Annals of Statistics, 32(5), 2168–2185.

    MathSciNet  MATH  Google Scholar 

  • Dey, A., & Mukerjee, R. (1999). Fractional factorial plans. New York: Wiley.

    MATH  Google Scholar 

  • Elsawah, A. M. (2019). Constructing optimal router bit life sequential experimental designs: New results with a case study. Communications in Statistics-Simulation and Computation, 48(3), 723–752.

    MathSciNet  Google Scholar 

  • Elsawah, A. M. (2018). Choice of optimal second stage designs in two-stage experiments. Computational Statistic, 33(2), 933–965.

    MathSciNet  MATH  Google Scholar 

  • Elsawah, A. M. (2017a). A closer look at de-aliasing effects using an efficient foldover technique. Statistics, 51(3), 532–557.

    MathSciNet  MATH  Google Scholar 

  • Elsawah, A. M. (2017b). A powerful and efficient algorithm for breaking the links between aliased effects in asymmetric designs. Australian & New Zealand Journal of Statistics, 59(1), 17–41.

    MathSciNet  MATH  Google Scholar 

  • Elsawah, A. M., Fang, K. T., & Ke, X. (2019). New recommended designs for screening either qualitative or quantitative factors. Statistical Papers,. https://doi.org/10.1007/s00362-019-01089-9.

    Article  Google Scholar 

  • Elsawah, A. M., & Qin, H. (2015a). A new strategy for optimal foldover two-level designs. Statistics & Probability Letters, 103, 116–126.

    MathSciNet  MATH  Google Scholar 

  • Elsawah, A. M., & Qin, H. (2015b). Mixture discrepancy on symmetric balanced designs. Statistics & Probability Letters, 104, 123–132.

    MathSciNet  MATH  Google Scholar 

  • Fang, K. T. (1980). The uniform design: Application of number-theoretic methods in experimental design. Acta Mathematicae Applicatae Sinica, 3, 363–372.

    MathSciNet  Google Scholar 

  • Fang, K. T., Ke, X., & Elsawah, A. M. (2017). Construction of uniform designs via an adjusted threshold accepting algorithm. Journal of Complexity, 43, 28–37.

    MathSciNet  MATH  Google Scholar 

  • Fang, K. T., Lu, X., & Winker, P. (2003). Lower bounds for centered and wrap-around \(L_2\)-discrepancies and construction of uniform designs by threshold accepting. Journal of Complexity, 19, 692–711.

    MathSciNet  MATH  Google Scholar 

  • Fang, K. T., Li, R., & Sudjianto, A. (2006). Design and modeling for computer experiments. New York: CRC Press.

    MATH  Google Scholar 

  • Fang, K. T., Lin, D. K. J., Winker, P., & Zhang, Y. (2000). Uniform design: Theory and application. Technometrics, 42, 237–248.

    MathSciNet  MATH  Google Scholar 

  • Fang, K. T., Ma, C. X., & Mukerjee, R. (2002). Uniformity in fractional factorials. In K. T. Fang, F. J. Hickernell, & H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo methods in scientific computing. Berlin: Springer.

    Google Scholar 

  • Fang, K. T., & Mukerjee, R. (2000). A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika, 87, 93–198.

    MathSciNet  MATH  Google Scholar 

  • Fang, K. T., & Wang, Y. (1994). Number-theoretic methods in statistics. London: Chapman and Hall.

    MATH  Google Scholar 

  • Franek, L., & Jiang, X. (2013). Orthogonal design of experiments for parameter learning in imagesegmentation. Signal Processing, 93, 1694–1704.

    Google Scholar 

  • Fries, A., & Hunter, W. G. (1980). Minimum aberration \(2^{k-p}\) designs. Technometrics, 22, 601–608.

    MathSciNet  MATH  Google Scholar 

  • Hedayat, A. S., Sloane, N. J., & Stufken, J. (1999). Orthogonal arrays: Theory and application. Berlin: Springer.

    MATH  Google Scholar 

  • Hickernell, F. J. (1998a). A generalized discrepancy and quadrature error bound. Mathematics of Computation, 67, 299–322.

    MathSciNet  MATH  Google Scholar 

  • Hickernell, F. J. (1998b). Lattice rules: How well do they measure up? In P. Hellekalek & G. Larcher (Eds.), Random and Quasi-random point sets. In: Lecture notes in statistics (Vol. 138, pp. 109–166). New York: Springer.

    Google Scholar 

  • Hou, H., Yue, S., Huang, X., & Wang, H. (2015). Application of orthogonal design to optimize flow pattern transition conditions. Sensor Review, 35(4), 425–431.

    Google Scholar 

  • Johnson, M. E., Moore, L. M., & Ylvisaker, D. (1990). Minimax and maximin distance design. Journal of Statistical Planning and Inference, 26, 131–148.

    MathSciNet  Google Scholar 

  • Lin, D. K. J. (1993). A new class of supersaturated designs. Technometrics, 35, 28–31.

    Google Scholar 

  • Liang, Y. Z., Fang, K. T., & Xu, Q. S. (2001). Uniform design and its applications in chemistry and chemical engineering. Chemometrics and Intelligent Laboratory System, 58, 43–57.

    Google Scholar 

  • Liang, J., Dong, L., Wang, M. D., Zhang, X. Y., & Hou, J. Z. (2016). Application of orthogonal design to the extraction and HPLC analysis of sedimentary pigments from lakes of the Tibetan Plateau. Science China Earth Sciences, 59(6), 1195–1205.

    Google Scholar 

  • Liu, M. Q., Fang, K. T., & Hickernell, F. J. (2006). Connection among different criteria for asymmetrical fractional factorial designs. Statistica Sinica, 16, 1285–297.

    MathSciNet  MATH  Google Scholar 

  • Lu, X., Fang, K. T., Xu, Q. F. & Yin, J. X. (2002). Balance pattern and BP-optimal factorial designs. Technical Report-324, Hong Kong Baptist University.

  • Luss, H. (1999). On equitable resource allocation problems: A lexicographic minimax approach. Operations Research, 47(3), 361–378.

    MATH  Google Scholar 

  • Ma, C. X., & Fang, K. T. (2001). A note on generalized aberration in factorial designs. Metrika, 53, 85–93.

    MathSciNet  MATH  Google Scholar 

  • Ma, C. X., Fang, K. T., & Lin, D. K. J. (2003). A note on uniformity and orthogonality. Journal of Statistical Planning and Inference, 113, 323–334.

    MathSciNet  MATH  Google Scholar 

  • Morris, M. D., & Mitchell, T. J. (1995). Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43, 381–402.

    MATH  Google Scholar 

  • Owen, B. (1992). Orthogonal arrays for computer experiments, integration and visualization. Statistica Sinica, 2(2), 439–452.

    MathSciNet  MATH  Google Scholar 

  • Pang, F., & Liu, M. Q. (2012). A note on connections among criteria for asymmetrical factorials. Metrika, 75, 23–32.

    MathSciNet  MATH  Google Scholar 

  • Qin, H., & Ai, M. (2007). A note on the connection between uniformity and generalized minimum aberration. Statistical Papers, 48, 491–502.

    MathSciNet  MATH  Google Scholar 

  • Qin, H., & Chen, Y. B. (2004). Some results on generalized minimum aberration for symmetrical fractional factorial designs. Statistics & Probability Letters, 66, 51–57.

    MathSciNet  MATH  Google Scholar 

  • Qin, H., & Fang, K. T. (2004). Discrete discrepancy infactorial designs. Metrika, 60, 59–72.

    MathSciNet  MATH  Google Scholar 

  • Qin, H., & Li, D. (2006). Connection between uniformity and orthogonality for symmetrical factorial designs. Journal of Statistical Planning and Inference, 136, 2770–2782.

    MathSciNet  MATH  Google Scholar 

  • Qin, H., Zou, N., & Chatterjee, K. (2009). Connection between uniformity and minimummoment aberration. Metrika, 70, 79–88.

    MathSciNet  MATH  Google Scholar 

  • Sun, F., Chen, J., & Liu, M. Q. (2011). Connections between uniformity and aberration in general multi-level factorials. Metrika, 73, 305–315.

    MathSciNet  MATH  Google Scholar 

  • Tang, B. (2001). Theory of J-characteristics for fractional factorial designs and projection justification of minimum G2-aberration. Biometrika, 88, 401–407.

    MathSciNet  MATH  Google Scholar 

  • Tang, B., & Deng, L. Y. (1999). Minimum \(G_2\)-aberration for non-regular fractional factorial designs. Annals of Statistics, 27, 1914–1926.

    MathSciNet  MATH  Google Scholar 

  • Tang, Y., & Xu, H. (2013). An effective construction method for multi-level uniform designs. Journal of Statistical Planning and Inference, 143, 1583–1589.

    MathSciNet  MATH  Google Scholar 

  • Tang, Y., Xu, H., & Lin, D. K. J. (2012). Uniform fractional factorial designs. Annals of Statistics, 40, 891–907.

    MathSciNet  MATH  Google Scholar 

  • Vanli, O. A., Zhang, C., Nguyen, A., & Wang, B. (2012). A minimax sensor placement approach for damage detection in composite structures. Journal of Intelligent Material Systems and Structures, 23, 919–932.

    Google Scholar 

  • Wang, Y., & Fang, K. T. (1981). A note on uniform distribution and experimental design. Chinese Science Bulletin, 26, 485–489.

    MathSciNet  MATH  Google Scholar 

  • Wu, H. (2013). Application of orthogonal experimental design for the automatic software testing. Proceedings of the 2nd ICCSEE.

  • Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 13, 691–708.

    MathSciNet  MATH  Google Scholar 

  • Xu, H., & Wu, C. F. J. (2001). Generalized minimum aberration for asymmetrical fractional factorial designs. The Annals of Statistics, 29, 549–560.

    MathSciNet  MATH  Google Scholar 

  • Xu, G., Zhang, J., & Tang, Y. (2014). Level permutation method for constructing uniform designs under the wrap-around \(L_2\)-discrepancy. Journal of Complexity, 30, 46–53.

    MathSciNet  MATH  Google Scholar 

  • Xu, Q. S., Xu, Y. D., Li, L., & Fang, K. T. (2018). Uniform experimental design in chemometrics. Journal of Chemometrics,. https://doi.org/10.1002/cem.3020.

    Article  Google Scholar 

  • Yamada, S., & Lin, D. K. J. (1999). Three-level supersaturated designs. Statistics & Probability Letters, 45, 31–39.

    MathSciNet  MATH  Google Scholar 

  • Yamada, S., & Matsui, T. (2002). Optimality of mixed-level supersaturated designs. The Journal of Statistical Planning and Inference, 104, 459–468.

    MathSciNet  MATH  Google Scholar 

  • Zhang, A., Fang, K. T., Li, R., & Sudjianto, A. (2005). Majorization framework for balanced lattice designs. The Annals of Statistics, 33(6), 2837–2853.

    MathSciNet  MATH  Google Scholar 

  • Zhou, Y. D., Fang, K. F., & Ning, J.-H. (2013). Mixture discrepancy for quasi-randompoint sets. Journal of Complexity, 29, 283–301.

    MathSciNet  MATH  Google Scholar 

  • Zhou, Y. D., & Xu, H. (2014). Space-filling fractional factorial designs. Journal of the American Statistical Association, 109(507), 1134–1144.

    MathSciNet  MATH  Google Scholar 

  • Zhou, Y. D., Ning, J. H., & Song, X. B. (2008). Lee discrepancy and its applications in experimental designs. Statistics & Probability Letters, 78, 1933–1942.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author greatly appreciate valuable comments and suggestions of the two referees and the Associate Editor that significantly improved the paper. The author greatly appreciate the kind support of Prof. Kai-Tai Fang and Prof. Hong Qin. This work was partially supported by the UIC Grants (Nos. R201810 and R201912) and the Zhuhai Premier Discipline Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Elsawah.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 261 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsawah, A.M. Building some bridges among various experimental designs. J. Korean Stat. Soc. 49, 55–81 (2020). https://doi.org/10.1007/s42952-019-00004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42952-019-00004-0

Keywords

Mathematics Subject Classification

Navigation