Skip to main content
Log in

Ex-situ and In-situ Manufacturing Procedures for Optimizing the Characteristics of a Soil Concrete Based on Lateritic Gravels and Granitic Aggregates: Application in Road Construction

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

A methodology of in-situ mixing of soil concrete in a quarry has been proposed to guarantee the required characteristics after implementation. The manufactured soil concrete is a mixture of granitic aggregates and lateritic gravels. Geotechnical tests were used to determine the physical and compaction characteristics of the studied materials. The results obtained show that the rocks encountered in the Gamboula area are granites with good to excellent impact resistance (LAA < 45%), good wear resistance (Micro Deval < 15%), and compaction characteristics (Maximum dry density MDD = 2.29 g/cm3, California bearing ratio CBR = 100%) suitable for use as a base course for T1 to T4 volume traffic. The nodular materials developed on these granitic rocks are thick (2.55 m) and present geotechnical characteristics required for use in sub-base (MDD = 2.09 g/cm3, CBR = 56%). The addition of 25% of 0/31.5 granite aggregates improves the characteristics of the lateritic gravels by decreasing the plasticity index, increasing the MDD, and obtaining a CBR value > 60%. A mixing logigram of the aggregate-soil mixture with the mechanical shovel was proposed. This logigram indicates that for these materials, mixing step number 5 gives a better homogeneity of the mixture and the best geotechnical characteristics, especially the CBR. After this step, the mixtures obtained can be implemented without risk of segregation or alteration of the geotechnical characteristics of the mixture.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data used during the study does not appear in the submitted article. Supplementary information is attached.

References

  1. Autret, P. (1983). Latérites et graveleux latéritiques. Etudes.

    Google Scholar 

  2. Bagarre, E. (1990). Utilisation des graveleux latéritiques en technique routière. ISTED.

    Google Scholar 

  3. Ngo'o Ze, A., Onana, V. L., Ndzié Mvindi, A. T., Nyassa Ohandja, H., Medjo Eko, R., & Ekodeck, G. E. (2019). Variability of geotechnical parameters of lateritic gravels overlying contrasted metamorphic rocks in a tropical humid area (Cameroon): implications for road construction. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-019-01488-0

    Article  Google Scholar 

  4. Ndiaye, M., Magnan, J.-P., Cissé, I. K., & Cissé, L. (2013). Étude de l’amélioration de latérites du Sénégal par ajout de sable. Bulletin du Laboratoire des Ponts et Chaussées Paris, 280–281, 123–137.

    Google Scholar 

  5. Toll, D. G., & Caicedo, B. (2015). Editorial of the special issue on lateritic and tropical geomaterials in construction of transportation infrastructures. Transportation Geotechnics, 5, 1–2.

    Article  Google Scholar 

  6. Sikali, F., Djalal, M. E. (1987). Utilisation des latérites en technique routière au Cameroun. In: Séminaire Régional sur les Latérites: Sols, Matériaux, Minerais, Douala, Cameroun, 21–27 Jan, vol 1986, pp 277–288.

  7. Kassogue, M., Herbert, G., Massiéra, M. (2002). Contrôle de la qualité sur les matériaux dans les couches de chaussée (Revêtement exclu). Proceeding of the 4th transportation speciality conference. Canadian Society for Civil Engineering, 30th annual conference, Montreal, Quebec, 5–8 Jun 2002, pp 413–422.

  8. Nkoumou, A.J.-F., Mouhamadou, B. D., Fary, D., Parisot, J. C., & Ndiane, D. (2004). Etude corrélative entre propriétés géochimiques et caractéristiques géomécaniques des latérites. Journal des Sciences et Technologies, 3(1 and 2).

  9. CEBTP. (1984). Guide pratique de dimensionnement des chaussées pour les pays tropicaux. Centre d’expertise du bâtiment et des travaux publics.

    Google Scholar 

  10. Attoh-Okine, B. (1990). Stabilizing effect of locally produced lime on selected lateritic soils. Construction and Building Materials, 4(2), 86–91.

    Article  Google Scholar 

  11. Fekpe, E., & Attoh-Okine, N. O. (1995). Deterioration modelling for lateritic-base flexible pavements. Construction and Building Materials, 9(3), 159–163.

    Article  Google Scholar 

  12. Frempong, E. M., & Tsidzi, U. K. E. N. (1999). Blending of marginally suitable tropical sub-base materials for use in base course construction. Construction and Building Materials, 13, 129–141.

    Article  Google Scholar 

  13. Millogo, Y., Karfa, T., Raguilnaba, O., Kalsibiri, K., Blanchart, P., & Thomassin, J. H. (2008). Geotechnical, mechanical, chemical and mineralogical characterization of lateritic gravels of Sapouy (Burkina Faso) used in road construction. Construction and Building Materials, 22, 70–76.

    Article  Google Scholar 

  14. Onana, V. L., Ngo’o Ze, A., Medjo Eko, R., Ntouala, R. F. D., Nanga Bineli, M. T., Ngono Owoudou, B., & Ekodeck, G. E. (2017). Geological identification, geotechnical and mechanical characterization of charnockitederived lateritic gravels from southern Cameroon for road construction purposes. Transportation Geotechnics, 10, 35–46.

    Article  Google Scholar 

  15. Hyoumbi, T. W., Pizette, P., Wouatong, A. S. L., Abriak, N.-E., Borrel, L. R., Ramafimahatratra, F. N., & Guiouillier, T. (2018). Investigations of the crushed basanite aggregates effects on lateritic fine soils of Bafang area (West-Cameroon). Geotechnical and Geological Engineering, 37, 2147–2164.

    Article  Google Scholar 

  16. Nzabakurikiza, A., Onana, V. L., Ngo’o Ze, A., Ndzié Mvindi, A. T., & Ekodeck, G. E. (2017). Geological, geotechnical and mechanical characterization of lateritic gravels from Eastern Cameroon for road construction purposes. Bulletin of Engineering Geology and Environment, 76(4), 1549–1562.

    Article  Google Scholar 

  17. Ndzié Mvindi, A. T., Onana, V. L., Ngo’o Ze, A., Nyassa Ohandja, H., & Ekodeck, G. E. (2017). Influence of hydromorphic conditions in the variability of geotechnical parameters of gneiss-derived lateritic gravels in a savannah tropical humid area (Centre Cameroon), for road construction purposes. Transportation Geotechnics, 12, 70–84.

    Article  Google Scholar 

  18. Tugume, B., Owani, I., Jjuuko, S., Kalumba, D. (2019) Performance of Lateritic Soils Stabilized with Both Crushed Rock Aggregates and Carbon Black as a Pavement Base Layer. L. Zhan et al. (Eds.): ICEG 2018, ESE, pp. 382–388, 2019. https://doi.org/10.1007/978-981-13-2221-139

  19. Ahouet, L., Elenga, R. G., Bouyila, S., Ngoulou, M., & Kengue, E. (2018). Amélioration des propriétés géotechniques du graveleux latéritique par ajout de la grave alluvionnaire concassée. Revue RAMReS Sciences Appliquées et de l’Ingénieur, 3(1), 1–6.

    Google Scholar 

  20. Etim, R. K., Attah, I. C., & Yohanna, P. (2020). Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction. International Journal of Pavement Research and Technology, 13, 341–351.

    Article  Google Scholar 

  21. Lobe Bille, J. F., Ngo’o Ze, A., Onana, V. L., & Ekodeck, G. E. (2022). Effects of pozzolana addition and geogrid reinforcement of lateritic clays in the sub-Saharan zone (West Cameroon): Implications for road construction. Bulletin of Engineering Geology and the Environment, 81, 272.

    Article  Google Scholar 

  22. Lompo P. (1980). Les matériaux utilisés en construction routière en Haute Volta. Un matériau non traditionnel ‘’Le lithostab’’ IVème Conf. Rout. Afri., 20–25 janvier-Nairobi, Kenya.

  23. Tang, Y., Xiao, J., Liu, Q., Xia, B., Singh, A., Lv, Z., & Song, W. (2022). Natural gravel-recycled aggregate concrete applied in rural highway pavement: Material properties and life cycle assessment. Journal of Cleaner Production, 334, 130219.

    Article  Google Scholar 

  24. Elsharief, A. M., Elhassan, A. A. M., & Mohamed, A. E. M. (2013). Lime stabilization of tropical soils from Sudan for road construction. International Journal of GEOMATE, 4(8), 533–538.

    Google Scholar 

  25. Regnoult J. M. (1986). Synthèse géologique du Cameroun. Mémento Ministère des Mines et de l’Energie (Cameroun).

  26. AFNOR NF P94-054. (1991). Sols: Reconnaissance et essais—détermination de la masse volumique des particules solides des sols—méthode du pycnomètre à eau. Association Française de Normalisation.

    Google Scholar 

  27. AFNOR NF P 18-554. (1990). Granulats: Mesures des masses volumiques, de la porosité, du coefficient d’absorption et de la teneur en eau des gravillons et cailloux. Association Française de Normalisation.

    Google Scholar 

  28. AFNOR NF P 18-555. (1990). Granulats: Mesures des masses volumiques, coefficient d’absorption et teneur en eau des sables. Association Française de Normalisation.

    Google Scholar 

  29. AFNOR NF P94-056. (1996). Analyse granulométrique. Méthode par tamisage à sec après lavage. Association Française de Normalisation.

    Google Scholar 

  30. AFNOR NF P94-051. (1993). Sols: Reconnaissance et essais, Détermination des limites d’Atterberg, limite de liquidité à la coupelle—limite de plasticité au rouleau. Association Française de Normalisation.

    Google Scholar 

  31. AFNOR NF P94-093. (1999). Sols: Reconnaissance et essais, Détermination des références de compactage d’un matériau, Essai Proctor normal—Essai Proctor modifié. Association Française de Normalisation.

    Google Scholar 

  32. AFNOR NF P94-078. (1997). Sols: Reconnaissance et essais, Indice CBR après immersion—Indice CBR immédiat—Indice Portant Immédiat. Association Française de Normalisation.

    Google Scholar 

  33. AFNOR NF EN 933-8. (1999). Essais pour déterminer les caractéristiques géométriques des granulats—partie 8: évaluation des fines—équivalent de sable. Association Française de Normalisation.

    Google Scholar 

  34. AFNOR NF P 18-572. (1990). Granulats: Essai Micro Deval. Association Française de Normalisation.

    Google Scholar 

  35. AFNOR NF P 18-573. (1990). Granulats: Essai de Los Angeles. Association Française de Normalisation.

    Google Scholar 

  36. Nwaiwu, C. M. O., Alkali, I. B. K., & Ahmed, U. A. (2006). Properties of ironstone lateritic gravels about gravel road pavement construction. Geotechnical and Geological Engineering, 24, 283–298.

    Article  Google Scholar 

  37. Paige-Green, P., Pinard, M., & Netterberg, F. (2015). A review of specifications for lateritic materials for low volume roads. Transportation Geotechnics, 5, 86–98.

    Article  Google Scholar 

  38. Direction des Etudes Générales et de la Normalisation (DEGN) (1987). Recommandations pour l’utilisation en corps de chaussées des matériaux volcaniques. Recommandation 30.005-R. Ministère de l’équipement, République du Cameroun.

  39. Niangoran, K. C., Thieblesson, L. M., Kouakou, B. S. A., & Kouadio, K. T. S. (2020). Contribution à l’amélioration d’un graveleux latéritique naturel de type G3 par la méthode de litho-stabilisation. European Journal of Scientific Research, 155(2), 210–227.

    Google Scholar 

  40. Babaliye, O., Houanou, K. A., Vianou, A., Tchehouali, A., & Foudjet, A. E. (2020). Litho stabilization of the lateritic gravelly by granite crushed for their use in the flexible pavement in Benin. International Journal of Advanced Research, 8(04), 1008–1016.

    Article  Google Scholar 

  41. Tchapga, G. G. M., Mambou, N. L. L., Tchoffo, F., Hamidou, G. F., & Ndjaka, J.-M.B. (2019). Mechanical and physical performances of concretes made from crushed sands of different geological nature subjected to high temperatures. Engineering Science and Technology, an International Journal, 22, 1116–1124.

    Article  Google Scholar 

  42. de Graft-Johnson, J. W. S., Bhatia, H. S., & Yeboa, S. L. (1972). Influence of geology and physical properties on strength characteristics of lateritic gravels for road pavements. Building and Road Research Institute.

    Google Scholar 

  43. Departemento Nacional de Infraestrutura de Transportes (DNIT) (2007). Pavimentacao –Base estabilizada granulometricamente com utilizacao de solo lateritico – Especificacao de servico; 2007. Norma DNIT-098/2007-ES.

  44. Issiakou, M. S., Saiyouri, N., Anguy, Y., Gaborieau, C., & Fabre, R. (2015). Etude des matériaux latéritiques utilisés en construction routière au Niger: méthode d’amélioration. Rencontres Universitaires de Génie Civil.

    Google Scholar 

  45. Jjuuko, S., Kalumba, D., Bbira, S., Bamutenda, J. B. (2014). Blending of marginally suitable lateritic soils for use in base construction. XIV congreso colombiano de geotecnia & IV congreso suramericano de ingenieros jóvenes geotécnicos. Bogotá D.C. 15 al 18 de octubre de 2014. Conference Paper. DOI: https://doi.org/10.13140/RG.2.1.2366.4808

  46. Al-Swaidani, A., Hammoud, I., & Meziab, A. (2016). Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2016.04.002

    Article  Google Scholar 

  47. Wilding, L. P., & Dress, L. R. (1983). Spatial variability and pedology. In: Wilding LP, Smeck N, Hall GF (eds), Pedogenesis and soil taxonomy. Wageningen, the Netherlands pp. 83–116.

    Google Scholar 

  48. Otálvaro, I. F., Neto, M. P. C., & Caicedo, B. (2015). Compressibility and microstructure of compacted laterites. Transportation Geotechnics, 5, 20–34.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Laboratory of Civil Engineering (LABOGENIE) and MAG Sarl for the quality of the analysis performed. They are highly indebted to the anonymous reviewer who assisted greatly to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Ngo’o Ze.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. Originality Statement The work titled “Ex-situ and in-situ manufacturing procedures for optimizing the characteristics of a soil concrete based on lateritic gravels and granitic aggregates: application in road construction” has not been published elsewhere, in part, or another form.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngo’o Ze, A., Ndzié Mvindi, A.T., Lobe Bille, J.F. et al. Ex-situ and In-situ Manufacturing Procedures for Optimizing the Characteristics of a Soil Concrete Based on Lateritic Gravels and Granitic Aggregates: Application in Road Construction. Int. J. Pavement Res. Technol. 17, 226–239 (2024). https://doi.org/10.1007/s42947-022-00231-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-022-00231-5

Keywords

Navigation