Skip to main content

Advertisement

Log in

Investigations of the Crushed Basanite Aggregates Effects on Lateritic Fine Soils of Bafang Area (West-Cameroon)

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The gravelly lateritic soils are commonly used for road sub-grade and sub-base course in tropical region due to their good bearing capacity. Whereas, the lack of their ore deposit along or near the corridors of the road construction implies the development of new approach for using these local materials in road construction works. That is why, this study has focused on blending of fine tropical soils with 0/5 mm of crushed basanite to be used for realizing the sub-base course layer. To achieve this aim, mineralogical, chemical and geotechnical tests were performed on crushed basanite and natural fine lateritic soils; and on the mixing materials at 20%, 30%, 40% and 50% of crushed basanite on the other hand. The mineralogical and chemical investigation on two facies of natural fine lateritic soils revealed that Silica/Sesquioxide ratios are less than 2 (S/R < 2). With the increasing of the rate of crushed basanite on these natural fine soils, basanite minerals increase in the mixing materials, but the S/R ratios are still less than 2. Moreover, this implies the relative increase of chemical elements in general and the increase of the amount of Ca, Mg, Na, K, Mn elements in particular. Despite the Ca element increases with the rate of mixing, chemical reaction is not implied. Even more, the addition of crushed basanite on fine lateritic soils have positive effects because fine particles, liquid limit, plasticity index, methylene blue values and optimum moisture content decrease, but conserve their geotechnical class or group, according to geotechnical classification standard. However, the maximum dry density, the Californian Bearing Ratio CBR and the unsoaked Californian Bearing Ratio increase with increasing of crushed basanite. Finally the minimum value of UCS obtained from the mixture materials is 1.67 MPa. Therefore, this physical treatment of fine lateritic soils, allows the increase of their bearing capacity. Starting from 30% of mixing, the bearing capacity values are desirable for sub-base material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Attoh-Okine NO (1990) Stabilizing effect of locally produced lime on selected lateritic soil. J Constr Build Mater 4:86–91

    Article  Google Scholar 

  • Autret P (1983) Latérites et graveleux latéritiques. Laboratoire Central des Ponts et Chaussées, Paris

    Google Scholar 

  • CEBTP (1984) Guide pratique de dimensionnement des chaussées des pays tropicaux. Ministère de la coopération de la république française, Paris

    Google Scholar 

  • Dakshanamurphy V, Raman V (1973) A simple method of identifying an expansive soil. Soils and foundations. Jpn Soc Soil Mech Found Ing 13(1):97–104

    Google Scholar 

  • Fekpe E, Attoh-Okine NO (1995) Deterioration modeling for lateritic-base flexible pavements. J Constr Build Mater 9:159–163

    Article  Google Scholar 

  • Frempong EM, Tsidzi NEK (1999) Blending of marginally suitable tropical sub-base materials for used in base course construction. J Constr Build Mater 13:129–141

    Article  Google Scholar 

  • Ghembaza MS, Dadouch M, Bellia Z (2012) Effet du ciment sur le comportement physico-chimique d’un matériau de la region de Sidi Bel Abbès. In: XXXème rencontres AUGC-IBPSA, Chambery-Savoie, Algérie

  • Hyoumbi TW, Wouatong ASL, Pizette P, Abriak NE, Medjo ER (2017) Assessment of laterite suitable for road construction in Bafang Area (West-Cameroon) based on physical properties, geo-environmental factors and GIS software. JMEST 4:6815–6829

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of common volcanic rocks. Can J Earth Sci 8(5):523–548

    Article  Google Scholar 

  • Issiakou SM (2016) Caractérisation et valorisation des matériaux latéritiques utilisés en construction routière au Niger. Thèse Doct., Univ. Bordeaux; 323p + annexes

  • Issiakou S M, Saiyouri N, Anguy Y, Gaborieau C, Fabre R (2015) Étude des matériaux latéritiques utilisés en construction routière au Niger: méthode d’amélioration. In: 33ème Rencontres de l’AUGC, ISABTP/UPPA, pp 2–8

  • Jones DE, Holtz WG (1973) Expansive soils-the Hidden disaster. Civ Eng 43(8):49–51

    Google Scholar 

  • Kajeste R, Hurme M (2015) Cement industry greenhouse gas emission-management options and abatement cost. J Clean Prod 112:4041–4052

    Article  Google Scholar 

  • Kamtchueng TB, Onana VL, Fantong YW, Ueda A, Ntouala FDR, Wongolo HDM, Ndongo BG, Ngo’o Ze A, Kamgang KBV, Ondoa JM (2015) Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid tropical area (Mfou, Central-Cameroon): implications for road construction. I. J Geo-Eng 6:1–21

    Article  Google Scholar 

  • Le Bas MJ, Le Maître RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Pet 27:745–750

    Article  Google Scholar 

  • Lyon Associates (1971) Laterite and lateritic soils and other problem soils of Africa. AID

  • Madjadoumbaye J, Ngapgue F, Nouanga P, Abdou CM, Tamo TT (2012) Improving the bearing capacity of laterite by adding sand. EJGE 17:23–32

    Google Scholar 

  • Maignien R (1980) Manuel pour la description des sols sur le terrain. O.R.S.T.O.M, Paris

    Google Scholar 

  • Mbumbia LA, de Wilmars Mertens, Tirlocq J (2000) Performance characteristics of lateritic soil bricks fired at low temperatures: a case study of Cameroon. J Constr Build Mater 14:121–131

    Article  Google Scholar 

  • Mefire NA, Njoya A, Yongue FR, Mache JR, Tapon NA, Nzeukou NA, Fagel N (2015) Occurrences of kaolin in Koutaba (west Cameroon): mineralogical and physic-chemical characterization for use in ceramic products. Clay Miner 50:593–606. https://doi.org/10.1180/claymin.2015.050.5.04

    Article  Google Scholar 

  • Millogo Y, Hajjaji M, Ouedraogo R, Gomina M (2008a) B) Cement-lateritic gravels mixtures: microstructure and strength characteristics. J Constr Build Mater 22:2078–2086

    Article  Google Scholar 

  • Millogo Y, Traoré K, Ouedraogo R, Kaboré K, Blanchart P, Thomassin JH (2008b) Geotechnical, mechanical, chemical and mineralogical characterization of a lateritic gravel of Sapouy (Burkina Faso) used in road construction. J Constr Build Mater 22:70–76

    Article  Google Scholar 

  • Millogo Y, Morel CJ, Traoré K, Ouedraogo R (2012) Microstructure, geotechnical and mechanical characteristics of quicklime-lateritic gravels mixtures used in road construction. J Constr Build Mater 26:663–669

    Article  Google Scholar 

  • MINTP (2015) Annuaire statistique du secteur des infrastructures au Cameroun. Ed. Ydé, Yaoundé

    Google Scholar 

  • Munsell color charts (1975) Color guides. Handbook manual, Baltimore

  • Mvindi NTA, Onana VL, Ngo’o Ze A, Ohandja NHT, Ekodeck EG (2017) Influence of hydromorphic condition in the variability of geotechnical parameters of gneiss-derived lateritic gravels in a savannah tropical humid area (Center-Cameroon) for road construction purposes. Transp Geotech 12:70–84

    Article  Google Scholar 

  • NF P 94-420 (2000) Roches. Détermination de la résistance à la compression uniaxiale, AFNOR

  • Norme NF P94-051 (1993) Reconnaissance et essai de détermination des limites d’Atterberg, AFNOR

  • Norme NF P94-078 (1997) Sols: Reconnaissance et essais indice CBR après immersion-indice CBR immédiat-indice portant immédiat, AFNOR

  • Norme NF P94-068 (1998) Mesure de la capacité d’absorption de bleu de méthylène d’un sol ou d’un matériau rocheux, AFNOR

  • Norme NF P94-093 (1999) Détermination des références de compactage d’un matériau, AFNOR

  • Norme NF P 94-056 (1993) Sols: Reconnaissance et Essais—Analyse granulométrique–Méthode par tamisage à sec après lavage, AFNOR

  • Nzabakurikiza A, Onana VL, Ngo’o Ze A, Mvindi NT, Ekodeck EG (2017) Geological, geotechnical and mechanical characterization of lateritic gravels from eastern Cameroon for road construction purposes. Bull Eng Geol Environ 76:1549–1562

    Article  Google Scholar 

  • Ojuri OO, Adavi AA, Oluwatuyi EO (2017) Geotechnical and environmental evaluation of lime-cement stabilized soil-mine tailing mixtures for highway construction. Transp Geotech 10:1–12

    Article  Google Scholar 

  • Okagbue CO, Onyeobi SUT (1999) Potential of marble dust to stabilise red tropical soils for road construction. J Eng Geol 53:371–380

    Article  Google Scholar 

  • Onana LV, Ngo’o Ze A, Medjo ER, Ntouala RFD, Nanga BMT, Owoudou NB, Ekodeck GE (2017) Geological identification, geotechnical and mechanical characterization of charnockite-derived lateritic gravels from Southern Cameroon for road Construction purposes. Transp Geotech 10:35–46

    Article  Google Scholar 

  • Osula DOA (1996) A comparative evaluation of cement and lime modification of laterite. J Eng Geol 42:71–81

    Article  Google Scholar 

  • Rodruguèz O, Kacimi L, Lopez-Delgado A, Fridas M, Guerrerro A (2012) Characterization of algerian reservoir sludges for use as active additions in cement: new pozzolans for eco-cement manufacture. Constr Build Mater 40:275–279

    Article  Google Scholar 

  • Sabat AK, Bose B (2013) Improvement in geotechnical properties of an expansive soil using fly ash quarry dust mixes. EJGE 18:3487–3500

    Google Scholar 

  • Samara M (2007) Valorisation des sédiments fluviaux pollués après inertage dans la brique cuite. Thèse Doct., Univ. Lille

  • San Nicolas R, Cyr M, Escadeillas G (2013) Characteristics and applications of flash metakaolins. Appl Clays Sci 83–84:253–262

    Article  Google Scholar 

  • Sikali and Mir Emérati (1986) Utilisation des latérites en techniques routières au Cameroun. Acte du séminaire régional sur les latérites : Douala-Cameroun, pp 277–288

  • Tan Y, Hu M, Li D (2016) Effects of agglomerate size on California bearing ratio of lime treated lateritic soils. IJSBE 5:168–175

    Google Scholar 

  • Tassongwa B, Eba F, Njoya D, Tchakounte NJ, Jeudong N, Nkoumbou C, Njopwouo D (2017) Physico-chemistry and geochemistry of Balengou clay deposit (West Cameroon) with inference to an argillic hydrothermal alteration. C R Geosci. https://doi.org/10.1016/j.crte.2017.06.002

    Google Scholar 

  • Tchuimegnie NBN, Kamgang P, Chazot G, Agranier A, Bellon H, Nonnotte P (2015) Age, geochemical characteristics and petrogenesis of Cenozoic intraplate alkaline volcanic rocks in the Bafang region, West Cameroon. J Afr Earth Sci 102:218–232

    Article  Google Scholar 

  • Tematio P, Fritsch E, Hodson ME, Lucas Y, Bitom D, Bilong P (2009) Mineral and geochemical characterization of a leptic aluandic soil and a thapto aluandic-ferralsol developed on trachytes in Mount Bambouto (Cameroon volcanic line). Geoderma 152:314–323. https://doi.org/10.1016/j.geoderma.2009.05.029

    Article  Google Scholar 

  • Thiry M, Carrillo N, Franke C, Martineau N (2013) Technique de préparation des minéraux argileux en vue de l’analyse par diffraction des Rayons X et introduction à l’interprétation des diagrammes. Rapport technique N°RT131010MTHI, Centre de Géoscience, Ecole des Mines de Paris, Fontainebleau

  • XP P94-011 (1999) Description—identification—Dénomination des sols, AFNOR

  • Yadav KA, Gumar K, Kishor R, Suman KS (2017) Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads. Int J Pavement Res Technol 10:254–261

    Article  Google Scholar 

Download references

Acknowledgements

This work has benefited the financial support of French Government through the Service de Coopération et d’Action Culturelle (SCAC) of France Ambassy in Cameroun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Tchungouelieu Hyoumbi.

Appendix

Appendix

1.1 Appendix 1: Major elements percentage of Bafang basanite quarry

Type de roche

Basanite

Samples

BB1

BB11

BB13

BB15

BB16

BB17

SiO2

48.09

43.76

44.07

43.85

45.69

41.81

TiO2

2.24

2.55

2.5

2.67

2.94

3.23

Al2O3

18.32

18.26

18.72

17.95

17.23

16.54

Fe2O3

10.47

11.06

10.45

10.72

13.04

12.12

MnO

0.13

0.13

0.26

0.13

0.27

0.13

MgO

3.25

4.21

3.31

4.81

4.3

6.92

CaO

7.07

8.97

9.37

9.93

8.27

10.68

Na2O

5.28

5.35

4.99

4.18

3.91

4.66

K2O

2.24

1.84

1.93

1.57

1.5

0.97

P2O5

1.41

1.87

1.6

0.92

1.66

0.7

LOI

1.4

1.6

2.5

1.77

1.01

1.04

Total

99.9

99.6

99.7

98.5

99.82

98.8

Type de roche

Basanites

Samples

BB18

BB19

BB20

BB21

SiO2

44.25

45.54

41.96

45.35

TiO2

2.77

2.76

2.73

2.67

Al2O3

17.13

18.03

16.21

17.38

Fe2O3

12.67

11.76

11.67

11.87

MnO

0.16

0.26

0.27

0.26

MgO

4.34

3.32

6.44

3.65

CaO

8.9

8.54

10.72

8.54

Na2O

4.06

4.31

4.97

4.85

K2O

1.69

1.57

2.09

1.81

P2O5

1.6

1.84

0.94

1.6

LOI

1.8

1.8

1.1

1.82

Total

99.8

99.8

99.1

99.8

1.2 Appendix 2: Diagram of classification of Bafang basanite quarry (Le Bas et al. 1986) with the line separating the alkaline domain and sub-alkaline domain (Irvine and Baragar 1971)

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyoumbi, W.T., Pizette, P., Wouatong, A.S.L. et al. Investigations of the Crushed Basanite Aggregates Effects on Lateritic Fine Soils of Bafang Area (West-Cameroon). Geotech Geol Eng 37, 2147–2164 (2019). https://doi.org/10.1007/s10706-018-0751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-018-0751-0

Keywords

Navigation