Skip to main content

Advertisement

Log in

Self-supported transition metal oxide electrodes for electrochemical energy storage

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Electrode materials are of decisive importance in determining the performance of electrochemical energy storage (EES) devices. Typically, the electrode materials are physically mixed with polymer binders and conductive additives, which are then loaded on the current collectors to function in real devices. Such a configuration inevitably reduces the content of active species and introduces quite some undesired interfaces that bring down the energy densities and power capabilities. One viable solution to address this issue is to construct self-supported electrodes where the active species, for example transition metal oxides (TMOs), are directly integrated with conductive substrates without polymer binders and conductive additives. In this review, the recent progress of self-supported TMO-based electrodes for EES devices including lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), aluminum-ion batteries (AIBs), metal-air batteries, and supercapacitors (SCs), is discussed in great detail. The focused attention is firstly concentrated on their structural design and controllable synthesis. Then, the mechanism understanding of the enhanced electrochemical performance is presented. Finally, the challenges and prospects of self-supported TMO-based electrodes are summarized to end this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced with permission from Ref. [37]. Copyright 2015, Wiley. b CoO@C‐Co on Co foil. Reproduced with permission from Ref. [49]. Copyright 2019, Wiley. c Co-MOF derived Co3O4 on Ti NWAs; Reproduced with permission from Ref. [54]. Copyright 2018, Elsevier. d Co3O4 on SS. Reproduced with permission from Ref. [57]. Copyright 2020, Elsevier

Fig. 4

Reproduced with permission from Ref. [78]. Copyright 2016, The Royal Society of Chemistry (RSC). b binder-free CuO NSs@MWCNTs [79]. Reproduced with permission from Ref. [79]. Copyright 2018, Elsevier. c 3D NPCu@Cu2O anodes, d SEM micrographs of NPCu foams produced by dealloying Cu50Al50, and e digital picture of Cu50Al50 alloy and NPCu foam. Reproduced with permission from Ref. [80]. Copyright 2013, RSC

Fig. 5

Reproduced with permission from Ref. [23]. Copyright 2020, Wiley. Schematic illustration of the synthesis procedure for e a-Fe2O3@Si@C/CC electrode. Reproduced with permission from Ref. [87]. Copyright 2018, Elsevier. f NiCo2O4 NWAs/carbon textiles composite. Reproduced with permission from Ref. [88]. Copyright 2014, Wiley. g Co@CoOx/HNCNTs. Reproduced with permission from Ref. [90]. Copyright 2020, American Chemical Society (ACS). h Illustration and i SEM images of the 3DGN/CuO electrode. Reproduced with permission from Ref. [91]. Copyright 2017, Elsevier

Fig. 6

Reproduced with permission from Ref. [92]. Copyright 2013, ACS. b Schematic illustrations of the electrospinning process and digital photograph of hybrid films during different heat treatment processes; c TEM image of NiFe2O4-CNFs, and inset is HRTEM image of NiFe2O4-CNFs. Reproduced with permission from Ref. [93]. Copyright 2018, Elsevier. d Illustration of the BT/C NFs. Reproduced with permission from Ref. [94]. Copyright 2019, Wiley. e Illustration of the flexible quasi-solid-state TiO2−x/CNTs//AC/CNTs device (and the corresponding SEM images of flexible TiO2−x/CNTs anode). Reproduced with permission from Ref. [97]. Copyright 2018, Wiley

Fig. 7

Reproduced with permission from Ref. [74]. Copyright 2020, Wiley. e Schematic illustration and SEM images of f flower-type and g sheet-type NiCo2O4/3D-GNF composite. Comparison of h cycle and i rate performances for the two types NiCo2O4 in terms of discharge capacity. Reproduced with permission from Ref. [75]. Copyright 2016, Wiley

Fig. 8

Reproduced with permission from Ref. [156]. Copyright 2016, RSC

Fig. 9

Reproduced with permission from Ref. [161]. Copyright 2016, Wiley. f Cycling performance, g rate performance and h contribution ratios of capacitance- and diffusion-controlled processes at different scan rates of BT/C NFs. Reproduced with permission from Ref. [94]. Copyright 2019, Wiley

Fig. 10

Reproduced with permission from Ref. [187]. Copyright 2018, Wiley. e SEM images MCO/MoO2@Ni (inset: HRSEM). Electrochemical characterizations of MCO/MoO2@Ni cathode for Li-O2 batteries: f Cycling performance, g rate performances and h energy efficiency of MCO/MoO2@Ni and MCO/C@Ni cathode. Reproduced with permission from Ref. [190]. Copyright 2018, Wiley. i Configuration of an Al-air coin cell. j Voltage–time, k voltage-specific capacity and l power–current density curves for Co@CoOx/HNCNTs-1 h. Reproduced with permission from Ref. [90]. Copyright 2020, ACS

Fig. 11

Reproduced with permission from Ref. [222]. Copyright 2019, Elsevier. f Schematic illustration on the preparation process, g SEM images, and h GCD curves of ZnCo2O4-rGO composite electrode; i cycle abilities of ZnCo2O4-rGO and ZnCo2O4 electrodes, j GCDs at different current densities and k cycle ability of the asymmetric ZnCo2O4-rGO//AC SC. Reproduced with permission from Ref. [168]. Copyright 2018, Elsevier

Similar content being viewed by others

Change history

References

  1. Gong J, Li C, Wasielewski MR. Advances in solar energy conversion. Chem Soc Rev. 2019;48(7):1862.

    Article  CAS  Google Scholar 

  2. Li Q, Liu Y, Guo S, Zhou H. Solar energy storage in the rechargeable batteries. Nano Today. 2017;16:46.

    Article  CAS  Google Scholar 

  3. Ma Q, Wang P. Underground solar energy storage via energy piles. Appl Energy. 2020;261:114361.

    Article  Google Scholar 

  4. Shoaib M, Siddiqui I, Rehman S, Khan S, Alhems LM. Assessment of wind energy potential using wind energy conversion system. J Clean Prod. 2019;216:346.

    Article  Google Scholar 

  5. Bechtle P, Schelbergen M, Schmehl R, Zillmann U, Watson S. Airborne wind energy resource analysis. Renew Energ. 2019;141:1103.

    Article  Google Scholar 

  6. Javed MS, Zhong D, Ma T, Song A, Ahmed S. Hybrid pumped hydro and battery storage for renewable energy based power supply system. Appl Energ. 2020;257:114026.

    Article  Google Scholar 

  7. Kocaman AS, Modi V. Value of pumped hydro storage in a hybrid energy generation and allocation system. Appl Energ. 2017;205:1202.

    Article  Google Scholar 

  8. Li H, Zhang X, Zhao Z, Hu Z, Liu X, Yu G. Flexible sodium-ion based energy storage devices: recent progress and challenges. Energy Storage Mater. 2020;26:83.

    Article  Google Scholar 

  9. Maleki K, Sari H, Li X. Controllable cathode-electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for lithium ion batteries: a review. Adv Energy Mater. 2019;9(39):1901597.

    Article  CAS  Google Scholar 

  10. Liu Y, Wu Q, Liu L, Manasa P, Kang L, Ran F. Vanadium nitride for aqueous supercapacitors: a topic review. J Mater Chem A. 2020;8(17):8218.

    Article  CAS  Google Scholar 

  11. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F. Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon. 2019;141:467.

    Article  CAS  Google Scholar 

  12. Ellis BL, Knauth P, Djenizian T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv Mater. 2014;26(21):3368.

    Article  CAS  Google Scholar 

  13. Wang H, He J, Liu J, Qi S, Wu M, Wen J, Chen Y, Feng Y, Ma J. Electrolytes enriched by crown ethers for lithium metal batteries. Adv Funct Mater. 2020;1:2002578.

    Google Scholar 

  14. Qi S, Wang H, He J, Liu J, Cui C, Wu M, Li F, Feng Y, Ma J. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Sci Bull. 2020. https://doi.org/10.1016/j.scib.2020.09.018.

    Article  Google Scholar 

  15. Xu C, Yang Y, Wang H, Xu B, Li Y, Tan R, Duan X, Wu D, Zhou M, Ma J, Xu B. Roadmap on electrolytes for lithium- and sodium-metal batteries. Chem Asian J. 2020. https://doi.org/10.1002/asia.202000851.

    Article  Google Scholar 

  16. Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries. Adv Energy Mater. 2019;10(1):1902485.

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhang L, Lv T, Chu PK, Huo K. Two-dimensional transition metal chalcogenides for alkali metal ions storage. Chemsuschem. 2020;13(6):1114.

    Article  CAS  Google Scholar 

  18. Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Chou S, Dou S. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries. Small. 2019;15(32):e1805381.

    Article  CAS  Google Scholar 

  19. Yin D, Huang G, Na Z, Wang X, Li Q, Wang L. CuO nanorod arrays formed directly on Cu foil from MOFs as superior binder-free anode material for lithium-ion batteries. ACS Energy Lett. 2017;2(7):1564.

    Article  CAS  Google Scholar 

  20. Xia T, Wang Y, Mai C, Pan G, Zhang L, Zhao W, Zhang J. Facile in situ growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries. RSC Adv. 2019;9(34):19253.

    Article  CAS  Google Scholar 

  21. Li R, Huang J, Li J, Cao L, Luo Y, He Y, Lu G, Yu A, Chen S. Nitrogen-doped hard carbon on nickel foam as free-standing anodes for high-performance sodium-ion batteries. ChemElectroChem. 2019;7(3):604.

    Article  CAS  Google Scholar 

  22. Cao Y, Zhang A, Luo H, Gao H, Yan J, Yan Q, Liu Y, Zhang Y. Hierarchical urchin-like Fe2O3 structures grown directly on Ti foils for binder-free lithium-ion batteries with fast charging/discharging properties. Inorg Chem Commun. 2020;113:107769.

    Article  CAS  Google Scholar 

  23. Sun M, Wang Z, Ni J, Li L. Dual-doped hematite nanorod arrays on carbon cloth as a robust and flexible sodium anode. Adv Funct Mater. 2020;30(11):1910043.

    Article  CAS  Google Scholar 

  24. Liu T, Wang W, Yi M, Chen Q, Xu C, Cai D, Zhan H. Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chem Eng J. 2018;354:454.

    Article  CAS  Google Scholar 

  25. Khan Z, Park S, Hwang SM, Yang J, Lee Y, Song H, Kim Y, Ko H. Hierarchical urchin-shaped α-MnO2 on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na-air battery. NPG Asia Mater. 2016;8(7):e294.

    Article  Google Scholar 

  26. Zhang Z, Tan Q, Zhong Z, Su F. High-performance nickel manganese ferrite/oxidized graphene composites as flexible and binder-free anodes for Li-ion batteries. RSC Adv. 2015;5(50):40018.

    Article  CAS  Google Scholar 

  27. Jin T, Han Q, Jiao L. Binder-free electrodes for advanced sodium-ion batteries. Adv Mater. 2020;32(3):e1806304.

    Article  CAS  Google Scholar 

  28. Shobana MK. Self-supported materials for battery technology–a review. J Alloy Compd. 2020;831:154844.

    Article  CAS  Google Scholar 

  29. Pan J, Tian X, Zaman S, Dong Z, Liu H, Park HS, Xia B. Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries. Batt Supercaps. 2018;2(4):336.

    Article  CAS  Google Scholar 

  30. Boyd S, Augustyn V. Transition metal oxides for aqueous sodium-ion electrochemical energy storage. Inorg Chem Front. 2018;5(5):999.

    Article  CAS  Google Scholar 

  31. Clément RJ, Lun Z, Ceder G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energ Environ Sci. 2020;13(2):345.

    Article  Google Scholar 

  32. Low WH, Khiew PS, Lim SS, Siong CW, Ezeigwe ER. Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. J Alloy Compd. 2019;775:1324.

    Article  CAS  Google Scholar 

  33. Li Q, Li H, Xia Q, Hu Z, Zhu Y, Yan S, Ge C, Zhang Q, Wang X, Shang X, Fan S, Long Y, Gu L, Miao G, Yu G, Moodera JS. Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater. 2020. https://doi.org/10.1038/s41563-020-0756-y.

    Article  Google Scholar 

  34. Xu T, Meng Q, Fan Q, Yang M, Zhi W, Cao B. Electrophoretic deposition of binder-free MnO2/graphene films for lithium-ion batteries. Chinese J Chem. 2017;35(10):1575.

    Article  CAS  Google Scholar 

  35. Huang XL, Wang RZ, Xu D, Wang ZL, Wang HG, Xu JJ, Wu Z, Liu QC, Zhang Y, Zhang XB. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv Func Mater. 2013;23(35):4345.

    Article  CAS  Google Scholar 

  36. Miao S, Zhao H, Kang M, Shen H, Song W, Zhao D, Ye J, Li Z. High gravimetric and volumetric sodium storage in a functionalized coal-based microcrystal/CNT binder-free electrode. Chem Commun (Camb). 2019;55(55):7954.

    Article  CAS  Google Scholar 

  37. Cao K, Jiao L, Liu Y, Liu H, Wang Y, Yuan H. Ultra-high capacity lithium-ion batteries with hierarchical CoO nanowire clusters as binder free electrodes. Adv Func Mater. 2015;25(7):1082–9.

    Article  CAS  Google Scholar 

  38. Yuan S, Huang XL, Ma DL, Wang HG, Meng FZ, Zhang XB. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv Mater. 2014;26(14):2273.

    Article  CAS  Google Scholar 

  39. Shi Y, Yang D, Yu R, Liu Y, Hao S-M, Zhang S, Qu J, Yu Z. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage. J Power Sources. 2018;383:115.

    Article  CAS  Google Scholar 

  40. Li Q, Feng Y, Wang P, Che R. Superior-capacity binder-free anode electrode for lithium-ion batteries: CoxMnyNizO nanosheets with metal/oxygen vacancies directly formed on Cu foil. Nanoscale. 2019;11(11):5080.

    Article  CAS  Google Scholar 

  41. Teng X, Qin Y, Wang X, Li H, Shang X, Fan S, Li Q, Xu J, Cao D, Li S. A nanocrystalline Fe2O3 film anode prepared by pulsed laser deposition for lithium-ion batteries. Nanoscale Res Lett. 2018;13:1. https://doi.org/10.1186/s11671-018-2475.

    Article  Google Scholar 

  42. Fan S, Zhang J, Teng X, Wang X, Li H, Li Q, Xu J, Cao D, Li S, Hu H. Self-supported amorphous SnO2/TiO2 nanocomposite films with improved electrochemical performance for lithium-ion batteries. J Electrochem Soc. 2019;166(13):A3072.

    Article  CAS  Google Scholar 

  43. Cao L, Wang D, Wang R. NiO thin films grown directly on Cu foils by pulsed laser deposition as anode materials for lithium ion batteries. Mater Lett. 2014;132:357.

    Article  CAS  Google Scholar 

  44. Qin Y, Li Q, Xu J, Wang X, Zhao G, Liu C, Yan X, Long Y, Yan S, Li S. CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta. 2017;224:90.

    Article  CAS  Google Scholar 

  45. Meng R, Hou H, Liu X, Duan J, Liu S. Binder-free combination of amorphous TiO2 nanotube arrays with highly conductive Cu bridges for lithium ion battery anode. Ionics. 2016;22(9):1527.

    Article  CAS  Google Scholar 

  46. Xing GZ, Wang Y, Wong JI, Shi YM, Huang ZX, Li S, Yang YH. Hybrid CuO/SnO2 nanocomposites: towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl Phys Lett. 2014;105(14):143905.

    Article  CAS  Google Scholar 

  47. Chen W, Zhang H, Ma Z, Li S, Li Z. Binder free Cu(OH)2/CuO electrodes fabricated directly on copper foils by facile large-scale production method. J Alloy Compd. 2018;762:565.

    Article  CAS  Google Scholar 

  48. Li Z, Li G, Xu W, Zhou M, Xu C, Shi M, Li F, Chen L, He B. Self-integrated porous leaf-like CuO nanoplate array-based anodes for high-performance lithium-ion batteries. ChemElectroChem. 2018;5(19):2774.

    Article  CAS  Google Scholar 

  49. Liang P, Zhang H, Pan B, Su Y, Wang CA, Zhong M. Binder-free carbon-coated nanocotton transition metal oxides integrated anodes by laser surface ablation for lithium-ion batteries. Surf Interface Anal. 2019;51(8):874.

    Article  CAS  Google Scholar 

  50. Wang S, Ju P, Zhu Z, Zhao C. Co3O4/RGO/Co3O4 pseudocomposite grown in situ on a Co foil for high-performance supercapacitors. RSC Adv. 2016;6(102):99640.

    Article  CAS  Google Scholar 

  51. López MC, Lavela P, Ortiz GF, Tirado JL. Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries. Electrochem Commun. 2013;27:152.

    Article  CAS  Google Scholar 

  52. Tang Y, Hong L, Wu Q, Li J, Hou G, Cao H, Wu L, Zheng G. TiO2b nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochim Acta. 2016;195:27.

    Article  CAS  Google Scholar 

  53. Bi Z, Paranthaman MP, Menchhofer PA, Dehoff RR, Bridges CA, Chi M, Guo B, Sun X, Dai S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. J Power Sources. 2013;222:461.

    Article  CAS  Google Scholar 

  54. Zhao G, Sun X, Zhang L, Chen X, Mao Y, Sun K. A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes. J Power Sources. 2018;389:8.

    Article  CAS  Google Scholar 

  55. Lee DJ, Choi J, Ryou MH, Kim CH, Lee YM, Park JK. Binder-free metal fibril-supported Fe2O3 anodes for high-performance lithium-ion batteries. J Mater Chem A. 2014;2(9):2906.

    Article  CAS  Google Scholar 

  56. Jiang Y, Hu M, Zhang D, Yuan T, Sun W, Xu B, Yan M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy. 2014;5:60.

    Article  CAS  Google Scholar 

  57. Wu M, Zhang G, Chen N, Chen W, Qiao J, Sun S. A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Mater. 2020;24:272.

    Article  Google Scholar 

  58. Chen LY, Hou Y, Kang JL, Hirata A, Chen MW. Asymmetric metal oxide pseudocapacitors advanced by three-dimensional nanoporous metal electrodes. J Mater Chem A. 2014;2(22):8448.

    Article  CAS  Google Scholar 

  59. Liu H, Wang E, Zhang Q, Ren Y, Guo X, Wang L, Li G, Yu H. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Mater. 2019;17:253.

    Article  Google Scholar 

  60. Prabhin VS, Jeyasubramanian K, Jeyaseeli Rashmi I, Hikku GS, Veluswamy P, Cho BJ. Investigation of electrochemical capacitance of 18k nanoporous current collector incorporated MnO2. Mater Chem and Phys. 2018;220:128.

    Article  CAS  Google Scholar 

  61. Li Y, Kong LB, Liu MC, Zhang WB, Kang L. Facile synthesis of Co3V2O8 nanoparticle arrays on Ni foam as binder-free electrode with improved lithium storage properties. Ceram Int. 2017;43(1):1166.

    Article  CAS  Google Scholar 

  62. Li H, Zu J, Zhang S, Zhu J, Liu J, Xu Y. Facile synthesis of foamed-nickel supporting MnO2 as binder-less electrodes for high electrochemical performance supercapacitors. J Nanopart Res. 2019;21(2):34.

    Article  CAS  Google Scholar 

  63. Fu Y, Li X, Sun X, Wang X, Liu D, He D. Self-supporting Co3O4 with lemongrass-like morphology as a high-performance anode material for lithium ion batteries. J Mater Chem. 2012;22(34):17429.

    Article  CAS  Google Scholar 

  64. Huang M, Li F, Zhao XL, Luo D, You XQ, Zhang YX, Li G. Hierarchical ZnO@MnO2 core-shell Pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim Acta. 2015;152:172.

    Article  CAS  Google Scholar 

  65. Wu H, Sun W, Wang Y, Wang F, Liu J, Yue X, Wang Z, Qiao J, Rooney DW, Sun K. Facile synthesis of hierarchical porous three-dimensional free-standing MnCo2O4 cathodes for long-life Li-O2 batteries. ACS Appl Mater Inter. 2017;9(14):12355.

    Article  CAS  Google Scholar 

  66. Veerasubramani GK, Krishnamoorthy K, Kim SJ. Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J Power Sources. 2016;306:378.

    Article  CAS  Google Scholar 

  67. Wang H, Chen H, Wang H, Wu L, Wu Q, Luo Z, Wang F. Hierarchical porous FeCo2O4@Ni as a carbon- and binder-free cathode for lithium-oxygen batteries. J Alloy Compd. 2019;780:107.

    Article  CAS  Google Scholar 

  68. Jiang SL, Shi TL, Long H, Sun YM, Zhou W, Tang ZR. High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam. Nanoscale Res Lett. 2014;492(9):492.

    Article  CAS  Google Scholar 

  69. Zhao G, Xu Z, Sun K. Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li-O2 batteries. J Mater Chem. 2013;1(41):12862.

    Article  CAS  Google Scholar 

  70. Leng L, Zeng X, Song H, Shu T, Wang H, Liao S. Pd nanoparticles decorating flower-like Co3O4 nanowire clusters to form an efficient, carbon/binder-free cathode for Li-O2 batteries. J Mater Chem. 2015;3(30):15626.

    Article  CAS  Google Scholar 

  71. Qi J, Wang P, Yan Y, Zheng X, Cao J, Feng J. MCo2O4 (M=Co, Mn, Ni, Zn) nanosheet arrays constructed by two-dimension metal-organic frameworks as binder-free electrodes for lithium-ion batteries. Vacuum. 2019;169:108959.

    Article  CAS  Google Scholar 

  72. Liu S, Wu J, Zhou J, Fang G, Liang S. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. Electrochim Acta. 2015;176:1.

    Article  CAS  Google Scholar 

  73. Li J, Wang X, Song S, Zhao S, Wang F, Pan J, Feng J, Zhang H. Self-supported Co3O4wire-penetrated-cage hybrid arrays with enhanced supercapacitance properties. CrystEngComm. 2017;19(11):1459.

    Article  CAS  Google Scholar 

  74. Du Y, Ma W, Li H. In situ growth of CoP3 / carbon polyhedron/CoO/NF nanoarrays as binder-free anode for lithium-ion batteries with enhanced specific capacity. Small. 2020;16(11):e1907468.

    Article  CAS  Google Scholar 

  75. Zhang C, Yu JS. Morphology-tuned synthesis of NiCo2O4-coated 3D graphene architectures used as binder-free electrodes for lithium-ion batteries. Chemistry. 2016;22(13):4422.

    Article  CAS  Google Scholar 

  76. Kundu M, Liu L. Binder-free electrodes consisting of porous NiO nanofibers directly electrospun on nickel foam for high-rate supercapacitors. Mater Lett. 2015;144:114.

    Article  CAS  Google Scholar 

  77. Yang W, Cheng G, Dong C, Bai Q, Chen X, Peng Z, Zhang Z. NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. J Mater Chem A. 2014;2(47):20022.

    Article  CAS  Google Scholar 

  78. Han X, Cheng F, Chen C, Li F, Chen J. A Co3O4@MnO2/Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li-O2 batteries. Inorg Chem Front. 2016;3(6):866.

    Article  CAS  Google Scholar 

  79. Yuan W, Qiu Z, Chen Y, Zhao B, Liu M, Tang Y. A binder-free composite anode composed of CuO nanosheets and multi-wall carbon nanotubes for high-performance lithium-ion batteries. Electrochim Acta. 2018;267:150.

    Article  CAS  Google Scholar 

  80. Liu D, Yang Z, Wang P, Li F, Wang D, He D. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Nanoscale. 2013;5(5):1917.

    Article  CAS  Google Scholar 

  81. Zhang H, Zhang X, Li H, Zhang Y, Zeng Y, Tong Y, Zhang P, Lu X. Flexible rechargeable Ni//Zn battery based on self-supported NiCo2O4 nanosheets with high power density and good cycling stability. Green Energy Environ. 2018;3(1):56.

    Article  Google Scholar 

  82. Shao J, Zhou H, Zhu M, Feng J, Yuan A. Carbon cloth-supported Fe2O3 derived from Prussian blue as self-standing anodes for high-performance lithium-ion batteries. J Nanopart Res. 2019;21(4):79.

    Article  CAS  Google Scholar 

  83. Liang K, Gu T, Cao Z, Tang X, Hu W, Wei B. In situ synthesis of SWNTs@MnO2/polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy. 2014;9:245.

    Article  CAS  Google Scholar 

  84. Luo Y, Zhang H, Wang L, Zhang M, Wang T. Fixing graphene-Mn3O4 nanosheets on carbon cloth by a poles repel-assisted method to prepare flexible binder-free electrodes for supercapacitors. Electrochim Acta. 2015;180:983.

    Article  CAS  Google Scholar 

  85. Wang X, Zhang M, Liu E, He F, Shi C, He C, Li J, Zhao N. Three-dimensional core-shell Fe2O3@ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries. Appl Surf Sci. 2016;390:350.

    Article  CAS  Google Scholar 

  86. Cao C, Wei L, Wang G, Shen J. In-situ growing NiCo2O4 nanoplatelets on carbon cloth as binder-free catalyst air-cathode for high-performance microbial fuel cells. Electrochim Acta. 2017;231:609.

    Article  CAS  Google Scholar 

  87. Wang M, Huang Y, Wang K, Zhu Y, Zhang N, Zhang H, Li S, Feng Z. PVD synthesis of binder-free silicon and carbon coated 3D α-Fe2O3 nanorods hybrid films as high-capacity and long-life anode for flexible lithium-ion batteries. Energy. 2018;164:1021.

    Article  CAS  Google Scholar 

  88. Shen L, Che Q, Li H, Zhang X. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater. 2014;24(18):2630.

    Article  CAS  Google Scholar 

  89. Chen Y, Guan JH, Gan H, Chen BZ, Shi XC. Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors. J Appl Electrochem. 2017;48(1):105.

    Article  CAS  Google Scholar 

  90. Liu Y, Wang B, Sun Q, Pan Q, Zhao N, Li Z, Yang Y, Sun X. Controllable synthesis of Co@CoOx/Helical nitrogen-doped carbon nanotubes toward oxygen reduction reaction as binder-free cathodes for Al-air batteries. ACS Appl Mater Inter. 2020;12(14):16512.

    Article  CAS  Google Scholar 

  91. Ji D, Zhou H, Tong Y, Wang J, Zhu M, Chen T, Yuan A. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chemical Eng J. 2017;313:1623.

    Article  CAS  Google Scholar 

  92. Liu Y, Wang W, Gu L, Wang Y, Ying Y, Mao Y, Sun L, Peng X. Flexible CuO nanosheets/reduced-graphene oxide composite paper: binder-free anode for high-performance lithium-ion batteries. ACS Appl Mater Inter. 2013;5(19):9850.

    Article  CAS  Google Scholar 

  93. Zhang X, Wang C, Chen YN, Wang XG, Xie Z, Zhou Z. Binder-free NiFe2O4/C nanofibers as air cathodes for Li-O2 batteries. J Power Sources. 2018;377:136.

    Article  CAS  Google Scholar 

  94. Wang L, Yang G, Wang J, Wang S, Wang C, Peng S, Yan W, Ramakrishna S. In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries. Small. 2019;15(30):e1901584.

    Article  CAS  Google Scholar 

  95. Xie W, Li S, Wang S, Xue S, Liu Z, Jiang X, He D. N-doped amorphous carbon coated Fe3O4/SnO2 coaxial nanofibers as a binder-free self-supported electrode for lithium ion batteries. ACS Appl Mater Inter. 2014;6(22):20334.

    Article  CAS  Google Scholar 

  96. Jiang Y, Chen S, Mu D, Zhao Z, Li C, Ding Z, Xie C, Wu F. Flexible TiO2/SiO2/C film anodes for lithium-ion batteries. Chemsuschem. 2018;11(13):2040.

    Article  CAS  Google Scholar 

  97. Que LF, Yu FD, Wang ZB, Gu DM. Pseudocapacitance of TiO2-x/CNT anodes for high-performance quasi-solid-state Li-ion and Na-ion capacitors. Small. 2018;14(17):e1704508.

    Article  CAS  Google Scholar 

  98. Wang Y, Guo J, Li L, Ge Y, Li B, Zhang Y, Shang Y, Cao A. High-loading Fe2O3/SWNT composite films for lithium-ion battery applications. Nanotechnology. 2017;28(34):345703.

    Article  CAS  Google Scholar 

  99. Luo SH, Hu DB, Liu H, Li JZ, Yi TF. Hydrothermal synthesis and characterization of alpha-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. J Hazard Mater. 2019;368:714.

    Article  CAS  Google Scholar 

  100. Zhou T, Xu W, Zhang N, Du Z, Zhong C, Yan W, Ju H, Chu W, Jiang H, Wu C, Xie Y. Ultrathin cobalt oxide layers as electrocatalysts for high-performance flexible Zn-air batteries. Adv Mater. 2019;31(15):e1807468.

    Article  CAS  Google Scholar 

  101. Wang X, Liao Z, Fu Y, Neumann C, Turchanin A, Nam G, Zschech E, Cho J, Zhang J, Feng X. Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Mater. 2020;26:157.

    Article  Google Scholar 

  102. Ma L, Chen S, Pei Z, Li H, Wang Z, Liu Z, Tang Z, Zapien JA, Zhi C. Flexible waterproof rechargeable hybrid zinc batteries initiated by multifunctional oxygen vacancies-rich cobalt oxide. ACS Nano. 2018;12(8):8597.

    Article  CAS  Google Scholar 

  103. Susantyoko RA, Wang X, Xiao Q, Fitzgerald E, Zhang Q. Sputtered nickel oxide on vertically-aligned multiwall carbon nanotube arrays for lithium-ion batteries. Carbon. 2014;68:619.

    Article  CAS  Google Scholar 

  104. Zhang J, Ni S, Tang J, Yang X, Zhang L. The preparation of NiO/C-Ni composite as binder free anode for lithium ion batteries. Mater Lett. 2016;176:21.

    Article  CAS  Google Scholar 

  105. Fan X, Ni K, Han J, Wang S, Gou L, Li DL. Cathodic electrodeposition of porous MnO2 film as binder-free cathode for high performance rechargeable Zinc-ion battery. Funct Mater Lett. 2019;1:5.

    Google Scholar 

  106. Liu H, Guo Z, Wang S, Xun X, Chen D, Lian J. Reduced core-shell structured MnCo2O4@MnO2 nanosheet arrays with oxygen vacancies grown on Ni foam for enhanced-performance supercapacitors. J Alloy Compd. 2020;846:156504.

    Article  CAS  Google Scholar 

  107. Ozcan S, Tokur M, Cetinkaya T, Guler A, Uysal M, Guler MO, Akbulut H. Free standing flexible graphene oxide + α-MnO2 composite cathodes for Li–air batteries. Solid State Ionics. 2016;286:34.

    Article  CAS  Google Scholar 

  108. Aqueel Ahmed AT, Hou B, Inamdar AI, Cha S, Kim H, Im H. Morphology engineering of self-assembled nanostructured CuCo2O4 anodes for lithium-ion batteries. Energy Technol-ger. 2019;7(7):1900295.

    Article  CAS  Google Scholar 

  109. Zhang H, Tang Z, Zhang K, Wang L, Shi H, Zhang G, Duan H. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries. Electrochim Acta. 2017;247:692.

    Article  CAS  Google Scholar 

  110. Li Y, Liu M, Hou S, Wang P, Pan X, Xie M, Chen Y, Zhao L. Direct growth of urchin-like CuCo2O4 on Ni foam for ultrahigh capacity and excellent rate ability of lithium ion batteries. Appl Surf Sci. 2018;458:517.

    Article  CAS  Google Scholar 

  111. Li J, Zhang Y, Li L, Cheng L, Dai S, Wang F, Wang Y, Yu X. Formation of highly porous CuCo2O4 nanosheet assemblies for high-rate and long-term lithium storage. Sustain Energy Fuels. 2019;3(12):3370.

    Article  CAS  Google Scholar 

  112. Jin Y, Wang L, Jiang Q, Du X, Ji C, He X. Mesoporous MnCo2O4 microflower constructed by sheets for lithium ion batteries. Mater Lett. 2016;177:85.

    Article  CAS  Google Scholar 

  113. Wu L, Lang J, Wang S, Zhang P, Yan X. Study of Ni-dopped MnCo2O4 yolk-shell submicron-spheres with fast Li+ intercalation pseudocapacitance as an anode for high-performance lithium ion batteries. Electrochim Acta. 2016;203:128.

    Article  CAS  Google Scholar 

  114. Zhang L, Tang Q, Chen X, Fan B, Xiao K, Zhang S, Deng W, Hu A. Self-assembled synthesis of diamond-like MnCo2O4 as anode active material for lithium-ion batteries with high cycling stability. J Alloy Compd. 2017;722:387.

    Article  CAS  Google Scholar 

  115. Yang H, Xie Y, Zhu M, Liu Y, Wang Z, Xu M, Lin S. Hierarchical porous MnCo2O4 yolk-shell microspheres from MOFs as secondary nanomaterials for high power lithium ion batteries. Dalton Trans. 2019;48(25):9205.

    Article  CAS  Google Scholar 

  116. Zhou L, Zhao D, Lou XW. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv Mater. 2012;24(6):745.

    Article  CAS  Google Scholar 

  117. Bijelić M, Liu X, Sun Q, Djurišić AB, Xie MH, Ng AMC, Suchomski C, Djerdj I, Skoko Z, Popović J. Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J Mater Chem A. 2015;3(28):14759.

    Article  Google Scholar 

  118. Pan X, Ma J, Yuan R, Yang X. Layered double hydroxides for preparing CoMn2O4 nanoparticles as anodes of lithium ion batteries. Mater Chemi and Phys. 2017;194:137.

    Article  CAS  Google Scholar 

  119. Chen R, Hu Y, Shen Z, Chen Y, He X, Zhang X, Zhang Y. Controlled synthesis of carbon nanofibers anchored with ZnxCo3-xO4 nanocubes as binder-free anode materials for lithium-ion batteries. ACS Appl Mater Inter. 2016;8(4):2591.

    Article  CAS  Google Scholar 

  120. Zhang G, Yu L, Wu HB, Hoster HE, Lou XW. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv Mater. 2012;24(34):4609.

    Article  CAS  Google Scholar 

  121. Zhang T, Qiu H, Zhang M, Fang Z, Zhao X, Wang L, Chen G, Wei Y, Yue H, Wang C, Zhang D. A unique 2D-on-3D architecture developed from ZnMn2O4 and CMK-3 with excellent performance for lithium ion batteries. Carbon. 2017;123:717.

    Article  CAS  Google Scholar 

  122. Zhang T, Yue H, Qiu H, Wei Y, Wang C, Chen G, Zhang D. Nano-particle assembled porous core-shell ZnMn2O4 microspheres with superb performance for lithium batteries. Nanotechnology. 2017;28(10):105403.

    Article  CAS  Google Scholar 

  123. Pang F, Hou S, Wang P, Liu M, Luo Y, Zhao L. β-MnO2/metal-organic framework derived nanoporous ZnMn2O4 nanorods as lithium-ion battery anodes with superior lithium-storage performance. Chemistry. 2019;25(19):5043.

    Article  CAS  Google Scholar 

  124. Gong F, Xia D, Bi C, Yang J, Zeng W, Chen C, Ding Y, Xu Z, Liao J, Wu M. Systematic comparison of hollow and solid Co3V2O8 micro-pencils as advanced anode materials for lithium ion batteries. Electrochim Acta. 2018;264:358.

    Article  CAS  Google Scholar 

  125. Zhang Q, Pei J, Chen G, Bie C, Chen D, Jiao Y, Rao J. Co3V2O8 hexagonal pyramid with tunable inner structure as high performance anode materials for lithium ion battery. Electrochim Acta. 2017;238:227.

    Article  CAS  Google Scholar 

  126. Sambandam B, Soundharrajan V, Mathew V, Song J, Kim S, Jo J, Tung DP, Kim S, Kim J. Metal-organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. J Mater Chem A. 2016;4(38):14605.

    Article  CAS  Google Scholar 

  127. Park JS, Kim JH, Kang YC. Synthesis of carbonaceous/carbon-free nanofibers consisted of Co3V2O8 nanocrystals for lithium-ion battery anode with ultralong cycle life. Electrochim Acta. 2019;313:48.

    Article  CAS  Google Scholar 

  128. Peng L, Zhang H, Bai Y, Yang J, Wang Y. Unique synthesis of mesoporous peapod-like NiCo2O4–C nanorods array as an enhanced anode for lithium ion batteries. J Mater Chem A. 2015;3(44):22094.

    Article  CAS  Google Scholar 

  129. Zhang J, Chen Y, Chu R, Jiang H, Zeng Y, Zhang Y, Huang N, Guo H. Pseudocapacitive P-doped NiCo2O4 microspheres as stable anode for lithium ion batteries. J Alloy Compd. 2019;787:1051.

    Article  CAS  Google Scholar 

  130. Wang J, Zhang H, Lv X, Nie K, Gao X, Zhong J, Sun X. Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance. J Mater Sci. 2016;51(14):6590.

    Article  CAS  Google Scholar 

  131. Ambade RB, Koh KH, Ambade SB, Eom W, Noh SH, Koo CM, Kim SH, Han TH. Kinetically controlled low-temperature solution-processed mesoporous rutile TiO2 for high performance lithium-ion batteries. J Ind Eng Chem. 2019;80:667.

    Article  CAS  Google Scholar 

  132. Choi T, Kim SD, Yeo S, Cheon T, Kim SH, Ahn JH, Kim H. Rate performance enhancement of lithium-ion battery using precise thickness-controllable-carbon-coated titanium dioxide nanowire array electrode via atomic layer deposition. Electrochim Acta. 2020;334:135596.

    Article  CAS  Google Scholar 

  133. Choi WH, Lee CH, Kim He, Lee SU, Bang JH. Designing a high-performance nitrogen-doped titanium dioxide anode material for lithium-ion batteries by unravelling the nitrogen doping effect. Nano Energy. 2020;74:104829.

    Article  CAS  Google Scholar 

  134. Fasakin O, Oyedotun KO, Kebede M, Rohwer M, Roux LL, Mathe M, Eleruja MA, Ajayi EOB, Manyala N. Preparation and physico-chemical investigation of anatase TiO2 nanotubes for a stable anode of lithium-ion battery. Energy Reports. 2020. https://doi.org/10.1016/j.egyr.2020.02.010.

    Article  Google Scholar 

  135. Gardecka AJ, Lübke M, Armer CF, Ning D, Reddy MV, Williams AS, Lowe A, Liu Z, Parkin IP, Darr JA. Nb-doped rutile titanium dioxide nanorods for lithium-ion batteries. Solid State Sci. 2018;83:115.

    Article  CAS  Google Scholar 

  136. Guo C, Tian Q, Yang L. The size-controllable spindle TiO2 nanograins and their lithium storage properties. J Alloy Compd. 2019;776:740.

    Article  CAS  Google Scholar 

  137. Ha JU, Lee J, Abbas MA, Lee MD, Lee J, Bang JH. Designing hierarchical assembly of carbon-coated TiO2 nanocrystals and unraveling the role of TiO2/Carbon Interface in lithium-ion storage in TiO2. ACS Appl Mater Inter. 2019;11(12):11391.

    Article  CAS  Google Scholar 

  138. Ji W, Mei Y, Yang M, Liu H, Wang S, Shan Z, Fei D, Liu X, Gao X, Li X. The core-shell mesoporous titanium dioxide with in-situ nitrogen doped carbon as the anode for high performance lithium-ion battery. J Alloy Compd. 2019;1:806–946.

    Google Scholar 

  139. Jo MS, Park GD, Kang YC, Cho JS. Design and synthesis of interconnected hierarchically porous anatase titanium dioxide nanofibers as high-rate and long-cycle-life anodes for lithium-ion batteries. Nanoscale. 2018;10(28):13539.

    Article  CAS  Google Scholar 

  140. Li H, Li L, Zheng S, Wang X, Ma Z. High temperature resistant separator of PVDF-HFP/DBP/C-TiO2 for lithium-ion batteries. Materials (Basel). 2019;12(17):2813.

    Article  CAS  Google Scholar 

  141. Zhou F, Ouyang L, Liu J, Yang XS, Zhu M. Chemical bonding black phosphorus with TiO2 and carbon toward high-performance lithium storage. J Power Sources. 2020;449:227549.

    Article  CAS  Google Scholar 

  142. Zhong W, Huang J, Liang S, Liu J, Li Y, Cai G, Jiang Y, Liu J. New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power. ACS Energy Lett. 2019;5(1):31.

    Article  CAS  Google Scholar 

  143. Li L, Li Z, Yoshimura A, Sun C, Wang T, Chen Y, Chen Z, Littlejohn A, Xiang Y, Hundekar P, Bartolucci SF, Shi J, Shi S, Meunier V, Wang G, Koratkar N. Vanadium disulfide flakes with nanolayered titanium disulfide coating as cathode materials in lithium-ion batteries. Nat Commun. 2019;10(1):1764.

    Article  CAS  Google Scholar 

  144. Mao W, Wang Z, Li C, Zhu X, Dai C, Yang H, Chen X, Fang D. In-situ characterizations of chemo-mechanical behavior of free-standing vanadium pentoxide cathode for lithium-ion batteries during discharge-charge cycling using digital image correlation. J Power Sources. 2018;402:272.

    Article  CAS  Google Scholar 

  145. Nakhanivej P, Park SK, Shin KH, Yun S, Park HS. Hierarchically structured vanadium pentoxide/reduced graphene oxide composite microballs for lithium ion battery cathodes. J Power Sources. 2019;436:226854.

    Article  CAS  Google Scholar 

  146. Wang Y, Nie Z, Pan A, Zhang Y, Kong X, Zhu T, Liang S, Cao G. Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. J Mater Chem A. 2018;6(16):6792.

    Article  CAS  Google Scholar 

  147. Yao J, Li Y, Massé RC, Uchaker E, Cao G. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 2018;11:205.

    Article  Google Scholar 

  148. Song S, Huang Q, Zhu W. Hydrothermal route to VO2(B) nanorods: controlled synthesis and characterization. J Nanopart Res. 2017;19(10):353.

    Article  CAS  Google Scholar 

  149. Rahman MM, Wang JZ, Idris NH, Chen Z, Liu H. Enhanced lithium storage in a VO2(B)-multiwall carbon nanotube microsheet composite prepared via an in situ hydrothermal process. Electrochim Acta. 2010;56(2):693.

    Article  CAS  Google Scholar 

  150. Pei C, Xiong F, Sheng J, Yin Y, Tan S, Wang D, Han C, An Q, Mai L. VO2 nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density. ACS Appl Mater Inter. 2017;9(20):17060.

    Article  CAS  Google Scholar 

  151. Ma Y, Huang A, Zhou H, Ji S, Zhang S, Li R, Yao H, Cao X, Jin P. Template-free formation of various V2O5 hierarchical structures as cathode materials for lithium-ion batteries. J Mater Chem A. 2017;5(14):6522.

    Article  CAS  Google Scholar 

  152. Luo T, Liu Y, Su H, Xiao R, Huang L, Xiang Q, Zhou Y, Chen C. Nanostructured- VO2(B): a high-capacity magnesium-ion cathode and its electrochemical reaction mechanism. Electrochim Acta. 2018;260:805.

    Article  CAS  Google Scholar 

  153. Gu L, Wang J, Ding J, Li B, Yang S. W-doped VO2(B) nanosheets-built 3D networks for fast lithium storage at high temperatures. Electrochim Acta. 2019;295:393.

    Article  CAS  Google Scholar 

  154. He G, Li L, Manthiram A. VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries. J Mater Chem A. 2015;3(28):14750.

    Article  CAS  Google Scholar 

  155. Guo W, Wang Y, Li Q, Wang D, Zhang F, Yang Y, Yang Y. SnO2@C@VO2 composite hollow nanospheres as an anode material for lithium-ion batteries. ACS Appl Mater Inter. 2018;10(17):14993.

    Article  CAS  Google Scholar 

  156. Li S, Liu G, Liu J, Lu Y, Yang Q, Yang LY, Yang HR, Liu S, Lei M, Han M. Carbon fiber cloth@VO2(B): excellent binder-free flexible electrodes with ultrahigh mass-loading. J Mater Chem A. 2016;4(17):6426.

    Article  CAS  Google Scholar 

  157. Yuan W, Luo J, Pan B, Qiu Z, Huang S, Tang Y. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries. Electrochim Acta. 2017;241:261.

    Article  CAS  Google Scholar 

  158. Ning H, Xie H, Zhao Q, Liu J, Tian W, Wang Y, Wu M. Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries. J Alloy Compd. 2017;722:716.

    Article  CAS  Google Scholar 

  159. Samdani JS, Kang TH, Zhang C, Yu JS. Bicontinuous spider network architecture of free-standing MnCoOX@NCNF anode for Li-ion battery. ACS Omega. 2017;2(11):7672.

    Article  CAS  Google Scholar 

  160. Ma X, Li Z, Chen D, Li Z, Yan L, Li S, Liang C, Ling M, Peng X. Nitrogen-doped porous carbon sponge-confined ZnO quantum dots for metal collector-free lithium ion battery. J Electroanal Chem. 2019;848:113275.

    Article  CAS  Google Scholar 

  161. Wang X, Liu Y, Wang Y, Jiao L. CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties. Small. 2016;12(35):4865.

    Article  CAS  Google Scholar 

  162. Liu J, Dai J, Huang L, Fu B. Flexible and binder-free electrospun Co3O4 nanoparticles/carbon composite nanofiber mats as negative electrodes for sodium-ion batteries. Funct Mater Lett. 2018;11(04):1850072.

    Article  CAS  Google Scholar 

  163. Wang X, Cao K, Wang Y, Jiao L. Controllable N-doped CuCo2O4@C film as a self-supported anode for ultrastable sodium-ion batteries. Small. 2017;13(29):1700873.

    Article  CAS  Google Scholar 

  164. Song MJ, Kim IT, Kim YB, Shin MW. Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim Acta. 2015;182:289.

    Article  CAS  Google Scholar 

  165. Gomez J, Kalu EE, Nelson R, Weatherspoon MH, Zheng JP. Binder-free Co–Mn composite oxide for Li–air battery electrode. J Mater Chem A. 2013;1(10):3287.

    Article  CAS  Google Scholar 

  166. Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He S, Zhang Y. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources. 2014;269:760.

    Article  CAS  Google Scholar 

  167. Tian D, Lu X, Nie G, Gao M, Song N, Wang C. Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder-free electrodes for high-performance supercapacitors. Appl Surf Sci. 2018;458:389.

    Article  CAS  Google Scholar 

  168. Gao Z, Zhang L, Chang J, Wang Z, Wu D, Xu F, Guo Y, Jiang K. ZnCo2O4-reduced graphene oxide composite with balanced capacitive performance in asymmetric supercapacitors. Appl Surf Sci. 2018;442:138.

    Article  CAS  Google Scholar 

  169. Chen SM, Yang G, Jia Y, Zheng HJ. Three-dimensional NiCo2O4@NiWO4 core–shell nanowire arrays for high performance supercapacitors. J Mater Chem A. 2017;5:1028.

    Article  CAS  Google Scholar 

  170. Hwang JY, Du HL, Yun BN, Jeong MG, Kim JS, Kim H, Jung HG, Sun YK. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 2019;4(2):494.

    Article  CAS  Google Scholar 

  171. Liang J, Zhang L, XiLi D, Kang J. Rational design of hollow tubular SnO2@TiO2 nanocomposites as anode of sodium ion batteries. Electrochim Acta. 2020;341:136030.

    Article  CAS  Google Scholar 

  172. Wang W, Liu Y, Wu X, Wang J, Fu L, Zhu Y, Wu Y, Liu X. Advances of TiO2 as negative electrode materials for sodium-ion batteries. Adv Mater Technol-us. 2018;3(9):1800004.

    Article  CAS  Google Scholar 

  173. Xu ZL, Lim K, Park KY, Yoon G, Seong WM, Kang K. Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv Funct Mater. 2018;28(29):1802099.

    Article  CAS  Google Scholar 

  174. Yan D, Pan LA new sodium storage mechanism of TiO2 for sodium ion batteries. Inorg Chem Front. 2016;3(4):464.

    Article  CAS  Google Scholar 

  175. Shen J, Hu W, Li Y, Li L, Lv XJ, Zhang L. Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. J Alloy Compd. 2017;701:372.

    Article  CAS  Google Scholar 

  176. Liu X, Tan Y, Wang W, Li C, Seh ZW, Wang L, Sun Y. Conformal prelithiation nanoshell on LiCoO2 enabling high-Energy lithium-ion batteries. Nano Lett. 2020;20(6):4558.

    Article  CAS  Google Scholar 

  177. Lyu Y, Wu X, Wang K, Feng Z, Cheng T, Liu Y, Wang M, Chen R, Xu L, Zhou J, Lu Y, Guo B. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv Energy Mater. 2020;1:2000982.

    Google Scholar 

  178. Zhang G, He Y, Feng Y, Wang H, Zhu X. Pyrolysis-ultrasonic-assisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries. ACS Sustain Chem Eng. 2018;6(8):10896.

    Article  CAS  Google Scholar 

  179. Wu C, Gu S, Zhang Q, Bai Y, Li M, Yuan Y, Wang H, Liu X, Yuan Y, Zhu N, Wu F, Li H, Gu L, Lu J. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat Commun. 2019;10(1):73.

    Article  CAS  Google Scholar 

  180. Wu Y, Gong M, Lin MC, Yuan C, Angell M, Huang L, Wang DY, Zhang X, Yang J, Hwang BJ, Dai H. 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv Mater. 2016;28(41):9218.

    Article  CAS  Google Scholar 

  181. Yu X, Wang B, Gong D, Xu Z, Lu B. Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv Mater. 2017;29(4):1604118.

    Article  CAS  Google Scholar 

  182. Yu Z, Jiao S, Li S, Chen X, Song WL, Teng T, Tu J, Chen H, Zhang G, Fang D. Flexible stable solid-state Al-ion batteries. Adv Funct Mater. 2019;29(1):1806799.

    Article  CAS  Google Scholar 

  183. Xiao X, Wang M, Tu J, Luo Y, Jiao S. Metal–organic framework-derived Co3O4@MWCNTs polyhedron as cathode material for a high-performance aluminum-ion battery. ACS Sustain Chem Eng. 2019;7(19):16200.

    Article  CAS  Google Scholar 

  184. Cai Y, Kumar S, Chua R, Verma V, Yuan D, Kou Z, Ren H, Arora H, Srinivasan M. Bronze-type vanadium dioxide holey nanobelts as high performing cathode material for aqueous aluminium-ion batteries. J Mater Chem A. 2020;8(25):12716.

    Article  CAS  Google Scholar 

  185. Kazazi M, Abdollahi P, Mirzaei-Moghadam M. High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ionics. 2017;300:32.

    Article  CAS  Google Scholar 

  186. Zhang K, Lee TH, Cha JH, Jang HW, Choi JW, Mahmoudi M, Shokouhimehr M. Metal-organic framework-derived metal oxide nanoparticles@reduced graphene oxide composites as cathode materials for rechargeable aluminium-ion batteries. Sci Rep. 2019;9(1):13739.

    Article  CAS  Google Scholar 

  187. Pal D, Mathur A, Singh A, Pakhira S, Singh R, Chattopadhyay S. Binder-free ZnO cathode synthesized via ALD by direct growth of hierarchical ZnO nanostructure on current collector for high-performance rechargeable aluminium-ion batteries. ChemistrySelect. 2018;3(44):12512.

    Article  CAS  Google Scholar 

  188. Liu Q, Wang L, Liu X, Yu P, Tian C, Fu H. N-doped carbon-coated Co3O4 nanosheet array/carbon cloth for stable rechargeable Zn-air batteries. Sci China Mater. 2018;62(5):624.

    Article  CAS  Google Scholar 

  189. Liu S, Gao S, Cui B, Xiang W, Liu X, Han W, Zhang J. An amorphous MnO2/lithiated NiO nanosheet array as an efficient bifunctional electrocatalyst for iron molten air batteries. Energy Technol-ger. 2019;7(5):1800932.

    Article  CAS  Google Scholar 

  190. Cao X, Sun Z, Zheng X, Jin C, Tian J, Li X, Yang R. MnCo2O4/MoO2 nanosheets grown on Ni foam as carbon- and binder-Free cathode for lithium-oxygen batteries. Chemsuschem. 2018;11(3):574.

    Article  CAS  Google Scholar 

  191. Yu L, Hu L, Anasori B, Liu YT, Zhu Q, Zhang P, Gogosti Y, Xu B. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 2018;3(7):1597.

    Article  CAS  Google Scholar 

  192. Gurten Inal II, Aktas Z. Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Appl Surf Sci. 2020;514:145895.

    Article  CAS  Google Scholar 

  193. Wang C, Wang J, Wu W, Qian J, Song S, Yue Z. Feasibility of activated carbon derived from anaerobic digester residues for supercapacitors. J Power Sources. 2019;412:683.

    Article  CAS  Google Scholar 

  194. El-Kady MF, Shao Y, Kaner RB. Graphene for batteries, supercapacitors and beyond. Nat Rev Mater. 2016;1(7):16033.

    Article  CAS  Google Scholar 

  195. Subramanian S, Johny MA, Malamal Neelanchery M, Ansari S. Self-discharge and voltage recovery in graphene supercapacitors. IEEE T Power Electr. 2018;33(12):10410.

    Article  Google Scholar 

  196. Liu T, Liu G. Block copolymer-based porous carbons for supercapacitors. J Mater Chem A. 2019;7(41):23476.

    Article  CAS  Google Scholar 

  197. Yoo Y, Kim MS, Kim JK, Kim YS, Kim W. Fast-response supercapacitors with graphitic ordered mesoporous carbons and carbon nanotubes for AC line filtering. J Mater Chem A. 2016;4(14):5062.

    Article  CAS  Google Scholar 

  198. Liu T, Zhang F, Song Y, Li Y. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A. 2017;5(34):17705.

    Article  CAS  Google Scholar 

  199. Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon. 2017;113:151.

    Article  CAS  Google Scholar 

  200. Tajik S, Dubal DP, Gomez-Romero P, Yadegari A, Rashidi A, Nasernejad B, Inamuddin AAM. Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: facile synthetic strategy. Int J Hydrogen Energ. 2017;42(17):12384.

    Article  CAS  Google Scholar 

  201. Wang L, Duan G, Zhu J, Chen SM, Liu XH, Palanisamy S. Mesoporous transition metal oxides quasi-nanospheres with enhanced electrochemical properties for supercapacitor applications. J Colloid Interface Sci. 2016;483:73.

    Article  CAS  Google Scholar 

  202. Yang Q, Li Z, Zhang R, Zhou L, Shao M, Wei M. Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy. 2017;41:408.

    Article  CAS  Google Scholar 

  203. Zhang G, Xiao X, Li B, Gu P, Xue H, Pang H. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A. 2017;5(18):8155.

    Article  CAS  Google Scholar 

  204. Pan Z, Qiu Y, Yang J, Ye F, Xu Y, Zhang X, Liu M, Zhang Y. Ultra-endurance flexible all-solid-state asymmetric supercapacitors based on three-dimensionally coated MnOx nanosheets on nanoporous current collectors. Nano Energy. 2016;26:610.

    Article  CAS  Google Scholar 

  205. Shinde SK, Yadav HM, Ramesh S, Bathula C, Maile N, Ghodake GS, Dhaygude H, Kim DY. High-performance symmetric supercapacitor; nanoflower-like NiCo2O4//NiCo2O4 thin films synthesized by simple and highly stable chemical method. J Mol Liq. 2020;299:112119.

    Article  CAS  Google Scholar 

  206. Singh A, Ojha AK. Designing vertically aligned porous NiCo2O4@MnMoO4 Core@Shell nanostructures for high-performance asymmetric supercapacitors. J Colloid Interface Sci. 2020;580:720.

    Article  CAS  Google Scholar 

  207. Wang WD, Zhang PP, Gao SQ, Wang BQ, Wang XC, Li M, Liu F, Cheng JP. Core-shell nanowires of NiCo2O4@alpha-Co(OH)2 on Ni foam with enhanced performances for supercapacitors. J Colloid Interface Sci. 2020;579:71.

    Article  CAS  Google Scholar 

  208. Wang X, Fang Y, Shi B, Huang F, Rong F, Que R. Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors. Chem Eng J. 2018;344:311.

    Article  CAS  Google Scholar 

  209. Dong T, Li M, Wang P, Yang P. Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4 for enhanced supercapacitor performance. Int J Hydrogen Energ. 2018;43(31):14569.

    Article  CAS  Google Scholar 

  210. Neeraj NS, Mordina B, Srivastava AK, Mukhopadhyay K, Prasad NE. Impact of process conditions on the electrochemical performances of NiMoO4 nanorods and activated carbon based asymmetric supercapacitor. Appl Surf Sci. 2019;473:807.

    Article  CAS  Google Scholar 

  211. Wan L, Liu J, Li X, Zhang Y, Chen J, Du C, Xie M. Fabrication of core-shell NiMoO4@MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int J Hydrogen Energ. 2020;45(7):4521.

    Article  CAS  Google Scholar 

  212. Gao Y, Xia Y, Wan H, Xu X, Jiang S. Enhanced cycle performance of hierarchical porous sphere MnCo2O4 for asymmetric supercapacitors. Electrochim Acta. 2019;301:294.

    Article  CAS  Google Scholar 

  213. Krittayavathananon A, Pettong T, Kidkhunthod P, Sawangphruk M. Insight into the charge storage mechanism and capacity retention fading of MnCo2O4 used as supercapacitor electrodes. Electrochim Acta. 2017;258:1008.

    Article  CAS  Google Scholar 

  214. Pettong T, Iamprasertkun P, Krittayavathananon A, Sukha P, Sirisinudomkit P, Seubsai A, Chareonpanich M, Kongkachuichay P, Limtrakul J, Sawangphruk M. High-performance asymmetric supercapacitors of MnCo2O4 nanofibers and N-doped reduced graphene oxide aerogel. ACS Appl Mater Inter. 2016;8(49):34045.

    Article  CAS  Google Scholar 

  215. Lin J, Liang H, Jia H, Chen S, Cai Y, Qi J, Cao J, Fei W, Feng J. Hierarchical CuCo2O4@NiMoO4 core–shell hybrid arrays as a battery-like electrode for supercapacitors. Inorg Chem Front. 2017;4(9):1575.

    Article  CAS  Google Scholar 

  216. Chen S, Zhang Z, Zeng W, Chen J, Deng L. Construction of NiCo2S4@NiMoO4 core-shell nanosheet arrays with superior electrochemical performance for asymmetric supercapacitors. ChemElectroChem. 2019;6(2):590.

    Article  CAS  Google Scholar 

  217. Zhang F, Su C, Wen F, Mu C, Li X, Ming X. High-performance aqueous asymmetric supercapacitors based on microwave-synthesized self-supported NiCo2O4 nanograss and carbide-derived carbon. ChemistrySelect. 2020;5(10):2865.

    Article  CAS  Google Scholar 

  218. Yan D, Wang W, Luo X, Chen C, Zeng Y, Zhu ZH. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem Eng J. 2018;334:864.

    Article  CAS  Google Scholar 

  219. Zhang GQ, Wu HB, Hoster HE, Chan-Park MB, Lou XW. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energ Environ Sci. 2012;5(11):9453.

    Article  CAS  Google Scholar 

  220. Guo D, Luo Y, Yu X, Li Q, Wang T. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy. 2014;8:174.

    Article  CAS  Google Scholar 

  221. Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Inter. 2013;5(15):7405.

    Article  CAS  Google Scholar 

  222. Qu Z, Shi M, Wu H, Liu Y, Jiang J, Yan C. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J Power Sources. 2019;41:179.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was finally supported by the National Nature Science Foundation of China (Grant No. 21975287), the start-up funding support of China University of Petroleum (East China), Taishan Scholar Project (Grant No. ts201712020), Technological Leading Scholar of 10000 Talent Project (Grant No. W03020508), Shandong Provincial Natural Science Foundation (Grant No. ZR2018ZC1458).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Hu or Ming-Bo Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, XL., Sun, XT., Guan, L. et al. Self-supported transition metal oxide electrodes for electrochemical energy storage. Tungsten 2, 337–361 (2020). https://doi.org/10.1007/s42864-020-00068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00068-0

Keywords

Navigation