Skip to main content

Advertisement

Log in

Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cryptomelane-type MnO2 (α-MnO2) was directly deposited on carbon fiber paper (CFP) by a simple electrochemical method and evaluated as the active material of binder-free electrodes for supercapacitors. The obtained α-MnO2@CFP electrode exhibits a higher capacitance and better rate capability than the ε-MnO2@CFP electrode prepared by the conventional electrochemical method. For the α-MnO2@CFP electrode, a specific capacitance of 623.9 F g−1 can be achieved at 2 mV s−1 and the capacitance retention is up to 75% at 200 mV s−1. Compared to most of the binder-free MnO2/carbon electrodes reported in previous studies, the electrode also presents a much better rate capability. These superiorities mainly result from the specific tunnel structure of α-MnO2 which offers not only facile diffusion paths for cations but also plentiful reactive sites for the inner-surface redox reactions associated with the energy storage process. The fabrication method is facile and readily scalable and thus has great promise in the development of high-performance binder-free MnO2 electrodes for energy storage devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  CAS  Google Scholar 

  3. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  4. Xu CJ, Kang FY, Li BH, Du HD (2010) Recent progress on manganese dioxide based supercapacitors. J Mater Res 25:1421–1432

    Article  CAS  Google Scholar 

  5. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  6. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  7. Kazemi SH, Kianic MA, Ghaemmaghami M, Kazemi H (2016) Nano-architectured MnO2 electrodeposited on the Cu-decorated nickel foam substrate as supercapacitor electrode with excellent areal capacitance. Electrochim Acta 197:107–116

    Article  CAS  Google Scholar 

  8. Akbulut S, Yilmaz M, Raina S, Hsu S-H, Kang WP (2017) Advanced supercapacitor prototype using nanostructured double-sided MnO2/CNT electrodes on flexible graphite foil. J Appl Electrochem 47:1035–1044

    Article  CAS  Google Scholar 

  9. Majumdar D, Bhattacharya SK (2017) Sonochemically synthesized hydroxy-functionalized graphene–MnO2 nanocomposite for supercapacitor applications. J Appl Electrochem 47:789–801

    Article  CAS  Google Scholar 

  10. Zhang SW, Peng C, Ng KC, Chen GZ (2010) Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks. Electrochim Acta 55:7447–7453

    Article  CAS  Google Scholar 

  11. Gong LY, Su LH, Jiang HY (2011) Rapid synthesis of homogeneous MnO2/multi-wall carbon nanotubes nanostructure and its electrochemical capacitive behavior. Mater Lett 65:1588–1590

    Article  CAS  Google Scholar 

  12. Wang J-W, Chen Y, Chen B-Z (2016) Synthesis and control of high-performance MnO2/carbon nanotubes nanocomposites for supercapacitors. J Alloy Compd 688:184–197

    Article  CAS  Google Scholar 

  13. Sharma RK, Oh H-S, Shul Y-G, Kim H (2007) Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor. J Power Sources 173:1024–1028

    Article  CAS  Google Scholar 

  14. Kim M, Hwang Y, Min K, Kim J (2013) Introduction of MnO2 nanoneedles to activated carbon to fabricate high-performance electrodes as electrochemical supercapacitor. Electrochim Acta 113:322–331

    Article  CAS  Google Scholar 

  15. Zhang YF, Zhang CX, Huang GX, Xing BL, Duan YL (2015) Synthesis and capacitive properties of manganese oxide nanoparticles dispersed on hierarchical porous carbons. Electrochim Acta 166:107–116

    Article  Google Scholar 

  16. Liu Z, Tan XL, Gao X, Song LH (2014) Synthesis of three-dimensionally ordered macroporous manganese dioxide–carbon nanocomposites for supercapacitors. J Power Sources 267:812–820

    Article  CAS  Google Scholar 

  17. Lei Y, Fournier C, Pascal JL, Favier F (2008) Mesoporous carbon–manganese oxide composite as negative electrode material for supercapacitors. Microporous Mesoporous Mater 110:167–176

    Article  CAS  Google Scholar 

  18. Liu Y, Yan D, Li YH, Wu ZG, Zhuo RF, Li SK, Feng JJ, Wang J, Yan PX, Geng ZR (2014) Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochim Acta 117:528–533

    Article  CAS  Google Scholar 

  19. Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  20. Kim JH, Lee KH, Overzet LJ, Lee GS (2011) Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnOx composites for high-performance energy storage devices. Nano Lett 11:2611–2617

    Article  CAS  Google Scholar 

  21. Chen W, Rakhi RB, Hu LB, Xie X, Cui Y, Alshareef HN (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11:5165–5172

    Article  CAS  Google Scholar 

  22. Donne SW, Feddrix FH, Glöckner R, Marion S, Norby T (2002) Water and protons in electrodeposited MnO2 (EMD). Solid State Ionics 152–153:695–701

    Article  Google Scholar 

  23. Aziz RA, Jose R (2017) Charge storage capability of tunnel MnO2 and alkaline layered Na-MnO2 as anode material for aqueous asymmetry supercapacitor. J Electroanal Chem 799:538–546

    Article  CAS  Google Scholar 

  24. Chen S, Zhu JW, Wu XD, Han QF, Wang X (2010) Graphene oxide MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  25. Poyraz AS, Huang J-P, Pelliccione CJ, Tong X, Cheng S-B, Wu LJ, Zhu YM, Marschilok AC, Takeuchi KJ, Takeuchi ES (2017) Synthesis of cryptomelane type α-MnO2 (KxMn8O16) cathode materials with tunable K+ content: the role of tunnel cation concentration on electrochemistry. J Mater Chem A 5:16914–16928

    Article  CAS  Google Scholar 

  26. Sun LM, Wang XH, Zhang K, Zou JP, Zhang Q (2016) Metal-free SWNT/carbon/MnO2 hybrid electrode for high performance coplanar micro-supercapacitors. Nano Energy 22:11–18

    Article  CAS  Google Scholar 

  27. Nawaz F, Cao HB, Xie YB, Xiao JD, Chen Y, Ghazi ZA (2017) Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol. Chemosphere 168:1457–1466

    Article  CAS  Google Scholar 

  28. Tan ZZ, Mei GG, Li WJ, Zeng KX (2004) Metallurgy of manganese, Central South University Press, Changsha

    Google Scholar 

  29. Kitchaev DA, Dacek ST, Sun W, Ceder G (2017) Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration. J Am Chem Soc 139:2672–2681

    Article  CAS  Google Scholar 

  30. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:147–182

    Google Scholar 

  31. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer/Plenum, New York

    Book  Google Scholar 

  32. Lu XH, Zhai T, Zhang XH, Shen YQ, Yuan LY, Hu B, Gong L, Chen J, Gao YH, Zhou J, Tong YX, Wang ZL (2012) WO3 – x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater 24:938–944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports of the National Natural Science Foundation of China (Grant No. 51374252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2266 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Guan, JH., Gan, H. et al. Electrochemical growth of α-MnO2 on carbon fibers for high-performance binder-free electrodes of supercapacitors. J Appl Electrochem 48, 105–113 (2018). https://doi.org/10.1007/s10800-017-1142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1142-6

Keywords

Navigation