Skip to main content

Advertisement

Log in

Electrochemical performance of various activated carbon-multi-walled carbon nanotubes symmetric supercapacitor electrodes in aqueous electrolytes

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

An electrical double-layer capacitor is fabricated with biomass-derived activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs), which are synthesized from Pongamia pinnata fruit shell and its seed oil, respectively. The activated carbon is produced by the chemical activation process at varying carbonization temperatures from 600 to 900 °C for 5 h at a rate of 10 min in an N2 atmosphere. The surface area of activated carbon and MWCNTs is 1170 m2 g−1 and 216 m2 g−1, respectively. The total pore volumes of activated carbon and MWCNTs are 1.51 cm3 g−1 and 0.5907 cm3 g−1, respectively. The as-prepared AC and MWCNTs are characterized by surface area analysis Brunner–Emmett–Teller method (BET), X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopic analysis, field emission scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The electrochemical performances of AC-AC, MWCNTs-MWCNTs and AC-MWCNTs (25:75) symmetric electrodes are studied by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The AC-MWCNTs (25:75) single electrode performance is also studied in two different electrolytes, such as 0.5 M Na2SO4 and 0.5 M H2SO4. The fabricated AC-MWCNTs (25:75) symmetric supercapacitor cell exhibits excellent electrochemical performance in 0.5 M Na2SO4. It shows a specific capacitance of 55.51 Fg−1, energy density 4.852 Wh Kg−1 and power density of 199.18 W Kg−1 at a current density of 1 Ag−1 in the voltage window of 0–1.8 V. The AC-AC and AC-MWCNTs (25:75) symmetric supercapacitor electrodes show outstanding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211. https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  2. Li C, Islam MdM, Moore J, Sleppy J, Morrison C, Konstantinov K, Dou SX, Renduchintala C, Thomas J (2016) Wearable energy-smart ribbons for synchronous energy harvest and storage. Nat Commun 7:13319. https://doi.org/10.1038/ncomms13319

    Article  CAS  Google Scholar 

  3. Phaneendra V, Reddy MRS, Kumar MV (2013) Constant power control of 15 DFIG wind turbines with energy storage. IJPSOEM. https://doi.org/10.47893/IJPSOEM.2013.1071

    Article  Google Scholar 

  4. Aval LF, Ghoranneviss M, Pour GB (2018) High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. Heliyon 4:e00862. https://doi.org/10.1016/j.heliyon.2018.e00862

    Article  Google Scholar 

  5. Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem 21:3422. https://doi.org/10.1039/c0jm03175e

    Article  CAS  Google Scholar 

  6. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652. https://doi.org/10.1126/science.1158736

    Article  CAS  Google Scholar 

  7. Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196:4873–4885. https://doi.org/10.1016/j.jpowsour.2011.02.022

    Article  CAS  Google Scholar 

  8. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597. https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  9. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  10. Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62. https://doi.org/10.1002/adma.200903328

    Article  CAS  Google Scholar 

  11. Ibukun O, Jeong HK (2018) An activated carbon and carbon nanotube composite for a high-performance capacitor. New Phys: Sae Mulli 68:185–188. https://doi.org/10.3938/NPSM.68.185

    Article  CAS  Google Scholar 

  12. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876. https://doi.org/10.1021/nl8038579

    Article  CAS  Google Scholar 

  13. Barisci J (2004) Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochem Commun 6:22–27. https://doi.org/10.1016/j.elecom.2003.09.015

    Article  CAS  Google Scholar 

  14. Pandit B, Dhakate SR, Singh BP, Sankapal BR (2017) Free-standing flexible MWCNTs bucky paper: extremely stable and energy efficient supercapacitive electrode. Electrochim Acta 249:395–403. https://doi.org/10.1016/j.electacta.2017.08.013

    Article  CAS  Google Scholar 

  15. Ambika AV, Navya N, Kiran Kumar SR, Suresha BL (2022) Electrochemical determination of paracetamol by SWCNT-modified carbon paste electrode: a cyclic voltammetric study. Carbon Lett. https://doi.org/10.1007/s42823-022-00354-6

    Article  Google Scholar 

  16. Akar AO, Yildiz UH, Tirkes S, Tayfun U, Hacivelioglu F (2022) Influence of carbon nanotube inclusions to electrical, thermal, physical and mechanical behaviors of carbon-fiber-reinforced ABS composites. Carbon Lett 32:987–998. https://doi.org/10.1007/s42823-022-00332-y

    Article  Google Scholar 

  17. Sathish S, Nirmala R, Kim HY, Navamathavan R (2022) Deriving activated carbon using microwave combustion technique and its energy storage applications: a topical review. Carbon Lett. https://doi.org/10.1007/s42823-022-00348-4

    Article  Google Scholar 

  18. Wang C, Bai L, Zhao F, Bai L (2022) Activated carbon fibers derived from natural cattail fibers for supercapacitors. Carbon Lett 32:907–915. https://doi.org/10.1007/s42823-022-00329-7

    Article  Google Scholar 

  19. Taer E, Febriyanti F, Mustika WS, Taslim R, Agustino A, Apriwandi A (2021) Enhancing the performance of supercapacitor electrode from chemical activation of carbon nanofibers derived areca catechu husk via one-stage integrated pyrolysis. Carbon Lett 31:601–612. https://doi.org/10.1007/s42823-020-00191-5

    Article  Google Scholar 

  20. He X, Ling P, Qiu J, Yu M, Zhang X, Yu C, Zheng M (2013) Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. J Power Sources 240:109–113. https://doi.org/10.1016/j.jpowsour.2013.03.174

    Article  CAS  Google Scholar 

  21. Peng C, Yan X, Wang R, Lang J, Ou Y, Xue Q (2013) Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochim Acta 87:401–408. https://doi.org/10.1016/j.electacta.2012.09.082

    Article  CAS  Google Scholar 

  22. Palisoc S, Dungo JM, Natividad M (2020) Low-cost supercapacitor based on multi-walled carbon nanotubes and activated carbon derived from Moringa oleifera fruit shells. Heliyon 6:e03202. https://doi.org/10.1016/j.heliyon.2020.e03202

    Article  Google Scholar 

  23. Muthu Balasubramanian M, Subramani M, Murugan D, Ponnusamy S (2020) Groundnut shell–derived porous carbon-based supercapacitor with high areal mass loading using carbon cloth as current collector. Ionics 26:6297–6308. https://doi.org/10.1007/s11581-020-03754-8

    Article  CAS  Google Scholar 

  24. Jain A, Tripathi SK (2014) Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Mater Sci Eng, B 183:54–60. https://doi.org/10.1016/j.mseb.2013.12.004

    Article  CAS  Google Scholar 

  25. Ahmed S, Ahmed A, Rafat M (2018) Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. J Saudi Chem Soc 22:993–1002. https://doi.org/10.1016/j.jscs.2018.03.002

    Article  CAS  Google Scholar 

  26. Zhou Y, Jin P, Zhou Y, Zhu Y (2018) High-performance symmetric supercapacitors based on carbon nanotube/graphite nanofiber nanocomposites. Sci Rep 8:9005. https://doi.org/10.1038/s41598-018-27460-8

    Article  CAS  Google Scholar 

  27. Mandal M, Subudhi S, Alam I, Subramanyam B, Patra S, Raiguru J, Das S, Mahanandia P (2021) Facile synthesis of new hybrid electrode material based on activated carbon/multiwalled carbon nanotubes@ZnFe2O4 for supercapacitor applications. Inorg Chem Commun 123:108332. https://doi.org/10.1016/j.inoche.2020.108332

    Article  CAS  Google Scholar 

  28. Thongpat W, Taweekun J, Maliwan K (2021) Synthesis and characterization of microporous activated carbon from rubberwood by chemical activation with KOH. Carbon Lett 31:1079–1088. https://doi.org/10.1007/s42823-020-00224-z

    Article  Google Scholar 

  29. Yan Q, Li J, Cai Z (2021) Preparation and characterization of chars and activated carbons from wood wastes. Carbon Lett 31:941–956. https://doi.org/10.1007/s42823-020-00205-2

    Article  Google Scholar 

  30. Bo X, Xiang K, Zhang Y, Shen Y, Chen S, Wang Y, Xie M, Guo X (2019) Microwave-assisted conversion of biomass wastes to pseudocapacitive mesoporous carbon for high-performance supercapacitor. J Energy Chem 39:1–7. https://doi.org/10.1016/j.jechem.2019.01.006

    Article  Google Scholar 

  31. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482. https://doi.org/10.1063/1.118568

    Article  CAS  Google Scholar 

  32. Yoon B-J, Jeong S-H, Lee K-H, Seok Kim H, Gyung Park C, Hun Han J (2004) Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes. Chem Phys Lett 388:170–174. https://doi.org/10.1016/j.cplett.2004.02.071

    Article  CAS  Google Scholar 

  33. Emmenegger Ch, Mauron Ph, Sudan P, Wenger P, Hermann V, Gallay R, Züttel A (2003) Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Sources 124:321–329. https://doi.org/10.1016/S0378-7753(03)00590-1

    Article  CAS  Google Scholar 

  34. Signorelli R, Ku DC, Kassakian JG, Schindall JE (2009) Electrochemical double-layer capacitors using carbon nanotube electrode structures. Proc IEEE 97:1837–1847. https://doi.org/10.1109/JPROC.2009.2030240

    Article  CAS  Google Scholar 

  35. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci USA 106:21490–21494. https://doi.org/10.1073/pnas.0908858106

    Article  Google Scholar 

  36. Show Y (2012) Electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode. J Nanomater 2012:1–8. https://doi.org/10.1155/2012/929343

    Article  CAS  Google Scholar 

  37. Tao R, Wang T, Fan J, Meyer HM, Borisevich AY, Do-Thanh C, Dai S (2022) Ionothermal synthesis of carbon/TiO2 nanocomposite for supercapacitors. ChemNanoMat. https://doi.org/10.1002/cnma.202200075

    Article  Google Scholar 

  38. Wei W, Chen Z, Zhang Y, Chen J, Wan L, Du C, Xie M, Guo X (2020) Full-faradaic-active nitrogen species doping enables high-energy-density carbon-based supercapacitor. J Energy Chem 48:277–284. https://doi.org/10.1016/j.jechem.2020.02.011

    Article  Google Scholar 

  39. Singh J, Mishra V (2021) Synthesis and characterization of activated carbon derived from Tectona grandis sawdust via green route. Env Progress Sustainable Energy 40:2. https://doi.org/10.1002/ep.13525

    Article  CAS  Google Scholar 

  40. Karthikeyan S, Sivakumar P, Palanisamy PN (2008) Novel activated carbons from agricultural wastes and their characterization. E-J Chem 5:409–426. https://doi.org/10.1155/2008/902073

    Article  CAS  Google Scholar 

  41. Karthikeyan S (2012) Response surface methodology for optimizing process parameters for synthesis of carbon nanotubes. J Environ Nanotechnol 1:40–45. https://doi.org/10.13074/jent.2012.10.121019

    Article  Google Scholar 

  42. Mageswari S, Angulakshmi VS, Sathiskumar C (2017) Synthesis of multi-walled carbon nanotubes and its application for removal of dyes. Int J Adv Res Basic Eng Sci Technol (IJARBEST) 3(28):2456–5717 (ISSN(Online))

    Google Scholar 

  43. Karthikeyan S (2013) Morphology and structural studies of multi-walled carbon nanotubes by spray pyrolysis using Madhuca Longifolia Oil. J Environ Nanotechnol 2:15–20. https://doi.org/10.13074/jent.2013.12.132040

    Article  Google Scholar 

  44. Li S, Lin J, Zhao L, Ren Z, Yu J (2022) Nano carbon/vertical graphene/MnO2 nanosheets composite particles for high-performance supercapacitors. Energy Tech 10:2100884. https://doi.org/10.1002/ente.202100884

    Article  CAS  Google Scholar 

  45. Jeżowski P, Nowicki M, Grzeszkowiak M, Czajka R, Béguin F (2015) Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte. J Power Sources 279:555–562. https://doi.org/10.1016/j.jpowsour.2015.01.027

    Article  CAS  Google Scholar 

  46. Barzegar F, Momodu DY, Fashedemi OO, Bello A, Dangbegnon JK, Manyala N (2015) Investigation of different aqueous electrolytes on the electrochemical performance of activated carbon-based supercapacitors. RSC Adv 5:107482–107487. https://doi.org/10.1039/C5RA21962K

    Article  CAS  Google Scholar 

  47. Maher M, Hassan S, Shoueir K, Yousif B, Abo-Elsoud MEA (2021) Activated carbon electrode with promising specific capacitance based on potassium bromide redox additive electrolyte for supercapacitor application. J Market Res 11:1232–1244. https://doi.org/10.1016/j.jmrt.2021.01.080

    Article  CAS  Google Scholar 

  48. Sivachidambaram M, Vijaya JJ, Kennedy LJ, Jothiramalingam R, Al-Lohedan HA, Munusamy MA, Elanthamilan E, Merlin JP (2017) Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications. New J Chem 41:3939–3949. https://doi.org/10.1039/C6NJ03867K

    Article  CAS  Google Scholar 

  49. Joshi S et al (2015) Sodium hydroxide activated nanoporous carbons based on lapsi seed stone. J Nanosci Nanotechnol 15(2):1465–1472. https://doi.org/10.1166/jnn.2015.9033

    Article  CAS  Google Scholar 

  50. Ferreira G, de Paula F, Campello-Gómez I, Ortega PFR, Rodríguez-Reinoso F, Martínez-Escandell M, Silvestre-Albero J (2019) Structural flexibility in activated carbon materials prepared under harsh activation conditions. Materials 12:1988. https://doi.org/10.3390/ma12121988

    Article  CAS  Google Scholar 

  51. Saravanan A, Prasad K, Gokulakrishnan N, Kalaivani R, Somanathan T (2014) Efficiency of transition metals in combustion catalyst for high yield helical multi-walled carbon nanotubes. Adv Sci Eng Med 6:809–813. https://doi.org/10.1166/asem.2014.1569

    Article  CAS  Google Scholar 

  52. Kaneto K, Tsuruta M, Sakai G, Cho WY, Ando Y (1999) Electrical conductivities of zmulti-wall carbon nano tubes. Synth Met 103:2543–2546. https://doi.org/10.1016/S0379-6779(98)00221-

    Article  CAS  Google Scholar 

  53. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130. https://doi.org/10.1063/1.1674108

    Article  CAS  Google Scholar 

  54. DiLeo RA, Landi BJ, Raffaelle RP (2007) Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J Appl Phys 101:064307. https://doi.org/10.1063/1.2712152

    Article  CAS  Google Scholar 

  55. Shimodaira N, Masui A (2002) Raman spectroscopic investigations of activated carbon materials. J Appl Phys 92:902–909. https://doi.org/10.1063/1.1487434

    Article  CAS  Google Scholar 

  56. Munir KS, Qian M, Li Y, Oldfield DT, Kingshott P, Zhu DM, Wen C (2015) Quantitative analyses of MWCNT-Ti powder mixtures using Raman spectroscopy: the influence of milling parameters on nanostructural evolution: quantitative analyses of MWCNTs-Ti powder mixtures. Adv Eng Mater 17:1660–1669. https://doi.org/10.1002/adem.201500142

    Article  CAS  Google Scholar 

  57. Puech K, Paredes M, Weiss-Hortala K, Ratel-Ramond P, Pellenq M (2019) Analyzing the Raman spectra of graphenic carbon materials from kerogens to nanotubes: what type of information can be extracted from defect bands? J Carbon Res 5:69. https://doi.org/10.3390/c5040069

    Article  CAS  Google Scholar 

  58. Joshi S, Shrestha RG, Pradhananga RR, Ariga K, Shrestha LK (2021) High surface area nanoporous activated carbons materials from areca catechu nut with excellent iodine and methylene blue adsorption. C 8:2. https://doi.org/10.3390/c8010002

    Article  CAS  Google Scholar 

  59. Jansen RJJ, van Bekkum H (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027. https://doi.org/10.1016/0008-6223(95)00030-H

    Article  CAS  Google Scholar 

  60. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389. https://doi.org/10.1016/S0008-6223(98)00333-9

    Article  CAS  Google Scholar 

  61. Liu Q, Ke M, Liu F, Yu P, Hu H, Li C (2017) High-performance removal of methyl mercaptan by nitrogen-rich coconut shell activated carbon. RSC Adv 7:22892–22899. https://doi.org/10.1039/C7RA03227G

    Article  CAS  Google Scholar 

  62. Xu L, Zhang J, Ding J, Liu T, Shi G, Li X, Dang W, Cheng Y, Guo R (2020) Pore structure and fractal characteristics of different shale lithofacies in the dalong formation in the western area of the lower yangtze platform. Minerals 10:72. https://doi.org/10.3390/min10010072

    Article  CAS  Google Scholar 

  63. Conway BE. (1999) Electrochemical capacitors based on pseudocapacitance. In: Electrochemical supercapacitors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3058-6_10

  64. Frackowiak E, Metenier K, Bertagna V, Beguin F (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421–2423. https://doi.org/10.1063/1.1290146

    Article  CAS  Google Scholar 

  65. Frackowiak E, Béguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950. https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  66. Kastening B, Spinzig S (1986) Electrochemical polarization of activated carbon and graphite powder suspensions. J Electro Analytical Chem Interfacial Electrochem 214:295–302. https://doi.org/10.1016/0022-0728(86)80104-8

    Article  CAS  Google Scholar 

  67. Mayer ST, Pekala RW, Kaschmitter JL (1993) The aerocapacitor: an electrochemical double-layer energy-storage device. J Electrochem Soc 140:446–451. https://doi.org/10.1149/1.2221066

    Article  CAS  Google Scholar 

  68. Tanahashi I, Yoshida A, Nishino A (1990) Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors. J Electrochem Soc 137:3052–3057. https://doi.org/10.1149/1.2086158

    Article  CAS  Google Scholar 

  69. Mistar EM, Alfatah T, Supardan MD (2020) Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two-step KOH activation. J Market Res 9:6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041

    Article  CAS  Google Scholar 

  70. Demiral H, Demiral İ, Tümsek F, Karabacakoğlu B (2008) Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation. Surf Interface Anal 40:616–619. https://doi.org/10.1002/sia.2631

    Article  CAS  Google Scholar 

  71. Girgis BS, Temerk YM, Gadelrab MM, Abdullah ID (2007) X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon letters 8:95–100. https://doi.org/10.5714/CL.2007.8.2.095

    Article  Google Scholar 

  72. Asadabad MA, Eskandari MJ. (2016) Electron diffraction. In: Janecek M, Kral R (Eds) Modern electron microscopy in physical and life sciences. InTech

  73. Frisch MJEA, Trucks GW, Schlegel BH, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G et al. Wallingford CT 201 (2009). "Gaussian 09, Revision D. 01, Gaussian". Inc

  74. Kruse H, Goerigk L, Grimme S (2012) Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J Org Chem 77:10824–10834. https://doi.org/10.1021/jo302156p

    Article  CAS  Google Scholar 

  75. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  76. Skripnikov L. (2016) Chemissian Version 4.43, Visualization Computer Program. http://www.chemissian.com

  77. Dong D, Zhang Y, Xiao Y, Wang T, Wang J, Romero CE, Pan W (2020) High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials. J Colloid Interface Sci 580:77–87. https://doi.org/10.1016/j.jcis.2020.07.018

    Article  CAS  Google Scholar 

  78. Adekoya D, Qian S, Gu X, Wen W, Li D, Ma J, Zhang S (2021) DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett 13:13. https://doi.org/10.1007/s40820-020-00522-1

    Article  CAS  Google Scholar 

  79. Cha W, Kim IY, Lee JM, Kim S, Ramadass K, Gopalakrishnan K, Premkumar S, Umapathy S, Vinu A (2019) Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries. ACS Appl Mater Interfaces 11:27192–27199. https://doi.org/10.1021/acsami.9b07657

    Article  CAS  Google Scholar 

  80. Weng G, Xie Y, Wang H, Karpovich C, Lipton J, Zhu J, Kong J, Pfefferle LD, Taylor AD (2019) A promising carbon/g-C 3 N 4 composite negative electrode for a long-life sodium-ion battery. Angew Chem Int Ed 58:13727–13733. https://doi.org/10.1002/anie.201905803

    Article  CAS  Google Scholar 

  81. Chen L, Yan R, Oschatz M, Jiang L, Antonietti M, Xiao K (2020) Ultrathin 2D graphitic carbon nitride on metal films: underpotential sodium deposition in adlayers for sodium-ion batteries. Angew Chem Int Ed 59:9067–9073. https://doi.org/10.1002/anie.202000314

    Article  CAS  Google Scholar 

  82. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed 52:3110–3116. https://doi.org/10.1002/anie.201209548

    Article  CAS  Google Scholar 

  83. Mousavi-Khoshdel M, Targholi E, Momeni MJ (2015) First-principles calculation of quantum capacitance of codoped graphenes as supercapacitor electrodes. J Phys Chem C 119:26290–26295. https://doi.org/10.1021/acs.jpcc.5b07943

    Article  CAS  Google Scholar 

  84. Cui G, Yi Z, Su F, Chen C, Han P (2021) A DFT study of the effect of stacking on the quantum capacitance of bilayer graphene materials. New Carbon Mater 36:1062–1070. https://doi.org/10.1016/S1872-5805(21)60079-3

    Article  CAS  Google Scholar 

  85. Sruthi T, Tarafder K (2019) Enhancement of quantum capacitance by chemical modification of graphene supercapacitor electrodes: a study by first principles. Bull Mater Sci 42:257. https://doi.org/10.1007/s12034-019-1952-8

    Article  CAS  Google Scholar 

  86. Honda Y, Takeshige M, Shiozaki H, Kitamura T, Yoshikawa K, Chakrabarti S, Suekane O, Pan L, Nakayama Y, Yamagata M, Ishikawa M (2008) Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor. J Power Sources 185:1580–1584. https://doi.org/10.1016/j.jpowsour.2008.09.020

    Article  CAS  Google Scholar 

  87. Du C, Pan N (2006) High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17:5314–5318. https://doi.org/10.1088/0957-4484/17/21/005

    Article  CAS  Google Scholar 

  88. Song C, Wang J, Meng Z, Hu F, Jian X (2018) Density functional theory calculations of the quantum capacitance of graphene oxide as a supercapacitor electrode. ChemPhysChem 19:1579–1583. https://doi.org/10.1002/cphc.201800070

    Article  CAS  Google Scholar 

  89. Portet C, Taberna PL, Simon P, Flahaut E (2005) Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J Power Sources 139:371–378. https://doi.org/10.1016/j.jpowsour.2004.07.015

    Article  CAS  Google Scholar 

  90. Bichat MP, Raymundo-Piñero E, Béguin F (2010) High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon 48:4351–4361. https://doi.org/10.1016/j.carbon.2010.07.049

    Article  CAS  Google Scholar 

  91. Kötz R, Hahn M, Gallay R (2006) Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources 154:550–555. https://doi.org/10.1016/j.jpowsour.2005.10.048

    Article  CAS  Google Scholar 

  92. Yang M, Chen Y, Wang H, Zou Y, Wu P, Zou J, Jiang J (2022) Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  93. Lee K-C, Lim MSW, Hong Z-Y, Chong S, Tiong TJ, Pan G-T, Huang C-M (2021) Coconut shell-derived activated carbon for high-performance solid-state supercapacitors. Energies 14:4546. https://doi.org/10.3390/en14154546

    Article  CAS  Google Scholar 

  94. Lai Y, Li J, Song H, Zhang Z, Li J, Liu Y (2007) Preparation of activated carbons from mesophase pitch and their electrochemical properties. J Cent South Univ Technol 14:633–637. https://doi.org/10.1007/s11771-007-0121-1

    Article  CAS  Google Scholar 

  95. Sun X, Zhang X, Zhang H, Zhang D, Ma Y (2012) A comparative study of activated carbon-based symmetric supercapacitors in Li2SO4 and KOH aqueous electrolytes. J Solid State Electrochem 16:2597–2603. https://doi.org/10.1007/s10008-012-1678-7

    Article  CAS  Google Scholar 

  96. Valente Nabais JM, Teixeira JG, Almeida I (2011) Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors. Biores Technol 102:2781–2787. https://doi.org/10.1016/j.biortech.2010.11.083

    Article  CAS  Google Scholar 

  97. Wu F-C, Tseng R-L, Hu C-C, Wang C-C (2005) Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. J Power Sources 144:302–309. https://doi.org/10.1016/j.jpowsour.2004.12.020

    Article  CAS  Google Scholar 

  98. Kim J-H, Jung S-C, Lee H-M, Kim B-J (2022) Comparison of pore structures of cellulose-based activated carbon fibers and their applications for electrode materials. IJMS 23:3680. https://doi.org/10.3390/ijms23073680

    Article  CAS  Google Scholar 

  99. Xu G, Zheng C, Zhang Q, Huang J, Zhao M, Nie J, Wang X, Wei F (2011) Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Res 4:870–881. https://doi.org/10.1007/s12274-011-0143-8

    Article  CAS  Google Scholar 

  100. Dolah BNM, Othman MAR, Deraman M, Basri NH, Farma R, Talib IA, Ishak MM (2013) Supercapacitor electrodes from activated carbon monoliths and carbon nanotubes. J Phys: Conf Ser 431:012015. https://doi.org/10.1088/1742-6596/431/1/012015

    Article  CAS  Google Scholar 

  101. An KH, Kim WS, Park YS, Moon J-M, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392. https://doi.org/10.1002/1616-3028(200110)11:5%3c387::AID-ADFM387%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  102. Gao Y, Tang Y, Liu W, Liu L, Zeng X (2020) Porous bamboo-like CNTs prepared by a simple and low-cost steam activation for supercapacitors. Int J Energy Res 44:10946–10952. https://doi.org/10.1002/er.5672

    Article  CAS  Google Scholar 

  103. Sudhan N, Subramani K, Karnan M, Ilayaraja N, Sathish M (2017) Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuels 31:977–985. https://doi.org/10.1021/acs.energyfuels.6b01829

    Article  CAS  Google Scholar 

  104. Kishore B, Shanmughasundaram D, Penki TR, Munichandraiah N (2014) Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J Appl Electrochem 44:903–916. https://doi.org/10.1007/s10800-014-0708-9

    Article  CAS  Google Scholar 

  105. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu GQ (2010) Microstructure and ectrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J Power Sources 195:912–918. https://doi.org/10.1016/j.jpowsour.2009.08.048

    Article  CAS  Google Scholar 

  106. Wang H, Zhou C, Zhu H, Li Y, Wang S, Shen K (2020) Hierarchical porous carbons from carboxylated coal-tar pitch functional poly(acrylic acid) hydrogel networks for supercapacitor electrodes. RSC Adv 10:1095–1103. https://doi.org/10.1039/C9RA09141F

    Article  CAS  Google Scholar 

  107. Taberna P-L, Chevallier G, Simon P, Plée D, Aubert T (2006) Activated carbon–carbon nanotube composite porous film for supercapacitor applications. Mater Res Bull 41:478–484. https://doi.org/10.1016/j.materresbull.2005.09.029

    Article  CAS  Google Scholar 

  108. Raymundo-Piñero E, Cadek M, Wachtler M, Béguin F (2011) Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons. Chemsuschem 4:943–949. https://doi.org/10.1002/cssc.201000376

    Article  CAS  Google Scholar 

  109. Iro ZS, Subramani C, Rajendran J, Sundramoorthy AK (2021) Promising nature-based activated carbon derived from flowers of Borassus flabellifer for supercapacitor applications. Carbon Lett 31:1145–1153. https://doi.org/10.1007/s42823-021-00237-2

    Article  Google Scholar 

  110. Liu Y, Cheng X, Zhang S (2022) Hierarchically porous carbon derived from tobacco waste by one-step molten salt carbonization for supercapacitor. Carbon Lett 32:251–263. https://doi.org/10.1007/s42823-021-00271-0

    Article  Google Scholar 

  111. Wei W, Wan L, Du C, Zhang Y, Xie M, Tian Z, Chen J (2019) Redox-active mesoporous carbon nanosheet with rich cracks for high-performance electrochemical energy storage. J Alloys Compd 794:247–254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. Karthik, Senior Scientist, Department of Powder Metallurgy ARCI, Hyderabad and Dr.R.Ramesh, Associate Professor, Department of Physics, Periyar University and Mr. S. Prabhu, Research Scholar, Department of Physics, Periyar University, Salem, Tamil Nadu, India for their help in availing characterization of samples and electrochemical workstation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanapal Thillaikkarasi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2613 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thillaikkarasi, D., Karthikeyan, S., Ramesh, R. et al. Electrochemical performance of various activated carbon-multi-walled carbon nanotubes symmetric supercapacitor electrodes in aqueous electrolytes. Carbon Lett. 32, 1481–1505 (2022). https://doi.org/10.1007/s42823-022-00386-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00386-y

Keywords

Navigation