Skip to main content
Log in

Structural characteristics and sodium penetration behaviors in anthracite cathodes: a combination study using Monte Carlo and molecular dynamics simulations

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

In aluminum electrolysis, sodium penetration into carbon cathodes is considered as the main cause of cell failure and efficiency loss, but the detailed mechanism is still not definitely clear. Since the macroscopic properties of material depend on the microscopic structures, a large-scale atomistic model of anthracite cathodes was constructed to represent several important structural characteristics. Combined with Monte Carlo and molecular dynamics simulations, the adsorption and diffusion behaviors of sodium were investigated, respectively. The results suggest that sodium adsorption mainly occurs in the larger micro-pores with the range of 10–19 Å, while it accords well with to type-I Langmuir adsorption model. The sodium is found to be preferentially adsorbed in arch-like structures with 5- or 7-membered rings or around heteroatom, especially oxygen. Moreover, the movements of sodium through carbon matrix mainly depend on the continuous diffusive motion while most sodium particles tend to be trapped in voids with small mobility. The calculated transport diffusion coefficient is equal to 6.132 × 10−10 m2/s, which is in outstanding agreement with experimental results. This fundamental research would contribute to the understanding of sodium penetration mechanism and the optimization of cathode industry in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thonstad J, Fellner P, Haarberg GM, Hives J, Kvarde H, Sterten A (2001) Aluminium electrolysis: fundamentals of the Hall–Herault process

  2. Brisson PY, Soucy G, Fafard M, Dionne M (2005) The effect of sodium on the carbon lining of the aluminum electrolysis cell—a review. Can Metall Q 44(2):265–280

    Article  CAS  Google Scholar 

  3. Thomas P, Billaud D (2002) Electrochemical insertion of sodium into hard carbons. Electrochim Acta 47(20):3303–3307

    Article  CAS  Google Scholar 

  4. Doeff MM, Ma Y, Visco SJ, De Jonghe LC (1993) Electrochemical insertion of sodium into carbon. J Electrochem Soc 140(12):L169–L170

    Article  CAS  Google Scholar 

  5. Dewing EW (1963) Reaction of sodium with nongraphitic carbon-reactions occurring in linings of aluminum reduction cells. Trans Metall Soc AIME 227(6):1328

    CAS  Google Scholar 

  6. Dell MB (2016) Reaction between carbon lining and hall bath. Essential readings in light metals. Springer, Cham, pp 946–952

    Chapter  Google Scholar 

  7. Naixiang F, Kvande H, Øye HA (1997) Penetration of sodium and molten bath into high pressure baked cathode blocks. Aluminium 73(4):265–270

    Google Scholar 

  8. Gudbrandsen H, Sterten Å, Ødegård R (1992) Cathodic dissolution of carbon in cryolitic melts. Light Metals 1992:521–528

    Google Scholar 

  9. Houston GJ, Welch BJ, Young DJ (1981) Uptake of electrochemically generated forms of sodium by various carbons. Light Metals 1981:529–540

    Google Scholar 

  10. Zolochevsky A, Hop JG, Servant G, Foosnaes T, Øye HA (2003) Rapoport–Samoilenko test for cathode carbon material: I. Experimental results and constitutive modelling. Carbon 41(3):497–505

    Article  CAS  Google Scholar 

  11. Zhao F, Zhang K, Lü XJ, Li LB, Jun Z, Li J (2013) Alkali metals (K and Na) penetration and its effects on expansion of TiB2-C composite cathode during aluminum electrolysis. Trans Nonferrous Metals Soc China 23(6):1847–1853

    Article  CAS  Google Scholar 

  12. Rafiei P, Hiltmann F, Hyland M, James B, Welch B (2016) Electrolytic degradation within cathode material. Essential readings in light metals. Springer, Cham, pp 1011–1016

    Chapter  Google Scholar 

  13. Feynman RP (1960) Soil engineering in the Arctic. Eng Sci 23(8):22–36

    Google Scholar 

  14. Wang W, Chen W, Gu W (2017) High-resolution TEM microscopy study of the creep behaviour of carbon-based cathode material. Mater Sci Eng A 687:107–112

    Article  CAS  Google Scholar 

  15. Huang Y, Cannon FS, Guo J, Watson JK, Mathews JP (2016) Atomistic modelling insight into the structure of lignite-based activated carbon and benzene sorption behavior. RSC Adv 6(61):56623–56637

    Article  CAS  Google Scholar 

  16. Brochard L, Vandamme M, Pellenq RJM, Fen-Chong T (2012) Adsorption-induced deformation of microporous material: coal swelling induced by CO2–CH4 competitive adsorption. Langmuir 28(5):2659–2670

    Article  CAS  Google Scholar 

  17. Kowalczyk P, Ciach A, Neimark AV (2008) Adsorption-induced deformation of microporous carbons: pore size distribution effect. Langmuir 24(13):6603–6608

    Article  CAS  Google Scholar 

  18. Mikhalev Y, Øye HA (1996) Absorption of metallic sodium in carbon cathode material. Carbon 34(1):37–41

    Article  CAS  Google Scholar 

  19. Zhong Q, Mao Q, Zhang L, Xiang J, Xiao J, Mathews JP (2018) Structural features of Qingdao petroleum coke from HRTEM lattice fringes: distributions of length, orientation, stacking, curvature, and a large-scale image-guided 3D atomistic representation. Carbon 129:790–802

    Article  CAS  Google Scholar 

  20. Huang L, Ning Z, Wang Q, Qi R, Zeng Y, Qin H, Zhang W (2018) Molecular simulation of adsorption behaviors of methane, carbon dioxide and their mixtures on kerogen: effect of kerogen maturity and moisture content. Fuel 211:159–172

    Article  CAS  Google Scholar 

  21. Sui H, Yao J (2016) Effect of surface chemistry for CH4/CO2 adsorption in kerogen: a molecular simulation study. J Nat Gas Sci Eng 31:738–746

    Article  CAS  Google Scholar 

  22. Pappano PJ, Mathews JP, Schobert HH (1999) Structural determinations of Pennsylvania anthracites. ACS Div Fuel Chem Preprints 44(3):567–568

    CAS  Google Scholar 

  23. Sorlie, M., & Oye, H. A. (1994). Cathodes in Aluminium Electrolysis, 2nd Edn, p. 185. Aluminium-Verlag, Dusseldorf

  24. Joncourt L, Mermoux M, Touzain PH, Bonnetain L, Dumas D, Allard B (1996) Sodium reactivity with carbons. J Phys Chem Solids 57(6–8):877–882

    Article  CAS  Google Scholar 

  25. Interactions of alkali metals and electrolyte with cathode carbons. Institutt for uorganisk kjemi, Norges teknisk-naturvitenskapelige universitet

  26. Atria JV, Rusinko F, Schobert HH (2002) Structural ordering of Pennsylvania Anthracites on heat treatment to 2000–2900 °C. Energy Fuels 16(6):1343–1347

    Article  CAS  Google Scholar 

  27. Wang W, Chen W, Gu W (2017) High-resolution TEM microscopy study of the creep behaviour of carbon-based cathode material. Mater Sci Eng A 687:107–112

    Article  CAS  Google Scholar 

  28. Lei Z, Jiang J, Zhu G, Cui P, Ling Q, Zhao Z (2016) Investigate the adsorption behavior of CO2 on char–inorganic compound model for coal gasification. Energy Fuels 30(2):1287–1293

    CAS  Google Scholar 

  29. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, vol 1. Elsevier, Amsterdam

    Google Scholar 

  30. Dubbeldam D, Calero S, Vlugt TJH, Krishna R, Maesen TL, Beerdsen E, Smit B (2004) Force field parametrization through fitting on inflection points in isotherms. Phys Rev Lett 93(8):088302

    Article  CAS  Google Scholar 

  31. Gasteiger J, Saller H (1985) Calculation of the charge distribution in conjugated systems by a quantification of the resonance concept. Angew Chem, Int Ed Engl 24(8):687–689

    Article  Google Scholar 

  32. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  33. Zhang J, Clennell MB, Dewhurst DN, Liu K (2014) Combined Monte Carlo and molecular dynamics simulation of methane adsorption on dry and moist coal. Fuel 122:186–197

    Article  CAS  Google Scholar 

  34. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101

    Article  CAS  Google Scholar 

  35. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97(4):2635–2643

    Article  Google Scholar 

  36. Berendsen HJ, Postma JV, van Gunsteren WF, DiNola ARHJ, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  37. Andersen HC (1983) Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 52(1):24–34

    Article  CAS  Google Scholar 

  38. Sarkisov L, Harrison A (2011) Computational structure characterisation tools in application to ordered and disordered porous material. Mol Simul 37(15):1248–1257

    Article  CAS  Google Scholar 

  39. Gelb LD, Gubbins KE (1999) Pore size distributions in porous glasses: a computer simulation study. Langmuir 15(2):305–308

    Article  CAS  Google Scholar 

  40. Mathews JP, Chaffee AL (2012) The molecular representations of coal—a review. Fuel 96:1–14

    Article  CAS  Google Scholar 

  41. Govaerts, J. (1993). Positronium spectroscopy in a magnetic field. arXiv preprint hep-ph/9308247

  42. Mathias PM, Copeman TW (1983) Extension of the Peng-Robinson equation of state to complex mixtures: evaluation of the various forms of the local composition concept. Fluid Phase Equilib 13:91–108

    Article  CAS  Google Scholar 

  43. Zhao Y, Feng Y, Zhang X (2016) Molecular simulation of CO2/CH4 self-and transport diffusion coefficients in coal. Fuel 165:19–27

    Article  CAS  Google Scholar 

  44. Smit E, Mulder MHV, Smolders CA, Karrenbeld H, Van Eerden J, Feil D (1992) Modelling of the diffusion of carbon dioxide in polyimide matrices by computer simulation. J Membr Sci 73(2–3):247–257

    Article  CAS  Google Scholar 

  45. Amani M, Amjad-Iranagh S, Golzar K, Sadeghi GMM, Modarress H (2014) Study of nanostructure characterizations and gas separation properties of poly (urethane–urea) s membranes by molecular dynamics simulation. J Membr Sci 462:28–41

    Article  CAS  Google Scholar 

  46. Skoulidas AI, Sholl DS (2003) Molecular dynamics simulations of self-diffusivities, corrected diffusivities, and transport diffusivities of light gases in four silica zeolites to assess influences of pore shape and connectivity. J Phys Chem A 107(47):10132–10141

    Article  CAS  Google Scholar 

  47. Chong SS, Jobic H, Plazanet M, Sholl DS (2005) Concentration dependence of transport diffusion of ethane in silicalite: a comparison between neutron scattering experiments and atomically detailed simulations. Chem Phys Lett 408(1–3):157–161

    Article  CAS  Google Scholar 

  48. Øye HA, Thonstad J, Dahlqvist K, Handa S, De Nora V (1996) Reduction of sodium induced stresses in Hall–Heroult cells. Aluminium 72(12):918–924

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support of the National Key R&D Program of China (2017YFC0210406), the National Natural Science Foundation of China (51974373, 51674300, 51874365, 61751312, and 61533020), the Natural Science Foundation of Hunan Province, China (2018JJ2521), the Graduate Research Program of CSU (502231804), and Hunan Provincial Innovation Foundation For Postgraduate (CX20190112). The assistance of Dr. Qifan Zhong in Poreblazer program and Dr. Pinxia Zhang in Perl scripts is appreciated. Besides, the software support of National Supercomputing Center in Shenzhen is also acknowledged. Finally, the authors would express the most sincere gratitude to the guidance of professor Jonathan P. Mathews in anthracite fragments model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, J., Zhang, H. et al. Structural characteristics and sodium penetration behaviors in anthracite cathodes: a combination study using Monte Carlo and molecular dynamics simulations. Carbon Lett. 30, 259–269 (2020). https://doi.org/10.1007/s42823-019-00094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00094-0

Keywords

Navigation