Skip to main content

Advertisement

Log in

Recent advancements in flame retardancy of MXene polymer nanoarchitectures

  • Research Article
  • Published:
Safety in Extreme Environments Aims and scope Submit manuscript

Abstract

Recently, escalating quests for miniaturized gadgets and flexible electronics have induced huge electromagnetic wave deterioration and high risk of fire outbreak. Hence, the fabrication of ultra-light and flame retardant (F-R) polymeric nanoarchitectures (PNC) has become critical and challenging. MXene (M-X), an emerging two-dimensional (2-D) nanomaterial (NM) has demonstrated high potential for fabricating F-R flexible PNC. Regarding flammability repression, increasing inclusion of M-X within polymeric matrices has demonstrated propensity to notably suppress critical flammability parameters such as heat release rate (HRR), peak of heat release rate (PHRR), carbon monoxide production rate (COPR), smoke production rate (SPR) and total mass loss rate (TMLR) while simultaneously increasing limiting oxygen index (LOI), time of ignition (TOI) and total peak of heat release rate (TPHRR) and attainment of UL-94 V-0 rating. These achievements have effectively repressed flammability of MX-polymeric nanoarchitectures thereby offering higher opportunity to minimize loss and actual risks in real life fire situation through formation of MX char within the condensed phase thereby effectively repressing the heat decomposition induced by oxygen to the polymeric matrix, thereby cutting-off the fire pathway. Hence, PNC fabricated from emerging nanoparticulates such as 2-D M-X (Ti3C2Tx) have demonstrated prospects for manufacturing high-performance flame suppressing PNC. Therefore, this paper presents recently emerging trends in flame retardant efficiency of M-X polymeric nanoarchitectures and applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644

    Google Scholar 

  • Cai W, Wang B, Wang X, Zhu Y, Li Z, Xu Z, Song L, Hu W, Hu Y (2021) Recent Progress in Two-dimensional Nanomaterials Following Graphene for Improving Fire Safety of Polymer (Nano)composites. Chinese Journal of Polymer Science

  • Cheng W, Zhang Y, Tian W, Liu J, Lu J, Wang B, Xing W, Hu Y (2020) Highly efficient MXene-coated flame retardant cotton fabric for electromagnetic interference shielding. Ind Eng Chem Res 59:31

    Google Scholar 

  • Cheng W, Zhang Y, Tao Y, Lu J, Liu J, Wang B, Song L, Jie G, Hu Y (2021) Durable electromagnetic interference (EMI) shielding ramie fabric with excellent flame retardancy and self-healing performance. J Colloid Interface Science

  • Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296:894–898

    Google Scholar 

  • Gao R, Wang S, Zhou K, Qian X (2019) Mussel-inspired decoration of Ni(OH)2 nanosheets on 2D MoS2 towards enhancing thermal and flame retardancy properties of poly(lactic acid). Polym Adv Technol 30:879–888

    Google Scholar 

  • He L, Wang J, Wang B, Wang X, Zhou X, Cai W, Mu X, Hou Y, Hu Y, Song L (2019) Large-scale production of simultaneously exfoliated and functionalized Mxenes as promising flame retardant for polyurethane. Compos. Part B Eng. 179:107486

    Google Scholar 

  • Huang Y, Huang Y, Jiang S, Jiang S, Liang R, Zhang L, Zhan L (2019) Thermal-triggered insulating fireproof layers: A novel fire-extinguishing MXene composites coating. Chem Eng J 391:123621

    Google Scholar 

  • Huang S, Wang L, Li Y, Liang C, Zhang J (2021) Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J Appl Polym Sci 138:e50649

    Google Scholar 

  • Idumah CI (2020a) Advancements in conducting polymer bionanocomposites, and hydrogels for biomedical applications. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2020.1857384

    Article  Google Scholar 

  • Idumah CI (2020b) Influence of NT in polymeric textiles, applications, and fight against COVID-19. The Journal of the Textile Institute. https://doi.org/10.1080/00405000.2020.1858600

    Article  Google Scholar 

  • Idumah CI (2020c) Emerging advancements in flame retardancy of polypropylene nanocomposites. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705720930782

    Article  Google Scholar 

  • Idumah CI (2021) Novel trends in conductive polymeric nanocomposites, and bionanocomposites. Synthetic Metals 273:116674

    Google Scholar 

  • Idumah CI (2021) Progress in polymer nanocomposites for bone regeneration and engineering. Polym Polym Compos 29(5):509–527. https://doi.org/10.1177/0967391120913658

    Article  Google Scholar 

  • Idumah CI (2021b) Novel trends in self-healable polymer nanocomposites. J Thermoplast Compos Mater 34:834–858

    Google Scholar 

  • Idumah CI (2021c) Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polym Polym Compos 29:246–258

    Google Scholar 

  • Idumah CI (2021d) Recent advancements in thermolysis of plastic solid wastes to liquid fuel. J Therm Anal Calorim. https://doi.org/10.1007/s10973-021-10776-5

    Article  Google Scholar 

  • Idumah C, Hassan A (2015) Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev Chem Eng 32:115–148

    Google Scholar 

  • Idumah C, Hassan A (2016a) Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Syn Met 212:91–104

    Google Scholar 

  • Idumah C, Hassan A (2016b) Recently emerging trends in thermal conductivity of polymer nanocomposites. Rev Chem Eng 32:413–457

    Google Scholar 

  • Idumah C, Hassan A (2016c) Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev Chem Eng 32:223–226

    Google Scholar 

  • Idumah C, Hassan A (2016d) Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J Polym Eng 36:877–889

    Google Scholar 

  • Idumah C, Hassan A (2016e) Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites. Rev Chem Eng 32:305–361

    Google Scholar 

  • Idumah C, Hassan A (2017) Hibiscus cannabinus fiber/PP based nano-biocomposites reinforced with graphene nanoplatelets. J Nat Fibers 14:691–706

    Google Scholar 

  • Idumah CI, Iheoma N (2019) Novel trends in plastic wastes management. SN Appl Sci 1:1402

    Google Scholar 

  • Idumah CI, Obere CM (2021) Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces 22:100879

    Google Scholar 

  • Idumah CI, Hassan A, Affam A (2015) A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng 31:149–177

    Google Scholar 

  • Idumah C, Hassan A, Bourbigot S (2017) Influence of exfoliated graphene nanoplatelets on flame retardancy of kenaf flour polypropylene hybrid nanocomposites. J Anal Appl Pyrolysis 123:65–72

    Google Scholar 

  • Idumah C, Hassan A, Ogbu J, Ndem J, Nwuzor I (2018a) Recently emerging advancements in halloysite nanotubes polymer nanocomposites. Compos Interface 26:751–824

    Google Scholar 

  • Idumah C, Hassan A, Bourbigot S (2018b) Synergistic effect of exfoliated graphene nanoplatelets and non-halogen flame retardants on flame retardancy and thermal properties of kenaf flour-PP nanocomposites. J Therm Anal Calorim 134:1681–1703

    Google Scholar 

  • Idumah CI, Ogbu J, Ndem J, Obiana V (2019a) Influence of chemical modification of kenaf fiber on xGNP-PP- nano-biocomposites. SN Applied Sciences 1:1261

    Google Scholar 

  • Idumah C, Hassan A, Ihuoma D (2019b) Recently emerging trends in polymer nanocomposites packaging materials. Polym-Plast Technol Eng 58:1054–1109

    Google Scholar 

  • Idumah CI, Hassan A, Ogbu JE, Ndem J, Oti W, Obiana V (2020a) Electrical, thermal and flammability properties of conductive filler kenaf–reinforced polymer nanocomposites. J Therm Compos Mater 33:516–540

    Google Scholar 

  • Idumah CI, Zurina M, Ogbu J, Ndem J, Igba C (2020c) A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture. Compos Interfaces 27:1–72

    Google Scholar 

  • Idumah CI, Obele CM, Enwerem UE (2021) On interfacial and surface behavior of polymeric MXenes nanoarchitectures and applications. Curr Res Green Sustain Chem 4:100104

    Google Scholar 

  • Idumah CI, Ezika A, Okpechi V (2021) Emerging trends in polymer aerogel nanoarchitectures, surfaces, interfaces and applications. Surfaces and Interfaces 25:101258

    Google Scholar 

  • Idumah CI, Nwuzor IC, Odera RS (2021a) Recent advances in polymer hydrogel nanoarchitectures and applications. Current Research in Green and Sustainable Chemistry. https://doi.org/10.1016/j.crgsc.2021.100143

    Article  Google Scholar 

  • Idumah CI, Ezeani EO, Nwuzor IC (2021b) A review: advancements in conductive polymers nanocomposites. Polymer-Plastics Technology and Materials 60:756–783

    Google Scholar 

  • Idumah CI, Obele MC, Ezeani EO (2021c) Understanding interfacial dispersions in ecobenign polymer nano-biocomposites. Polym-Plast Technol Mater 60(3):233–252

    Google Scholar 

  • Idumah, C. I (2019) Novel trends in selfhealable polymer nanocomposites. J Thermoplast Compos Mater 0892705719847247.

  • Idumah CI (2021) Novel trends in polymer aerogel nanocomposites. Polymer-Plastics Technology and Materials 1–13.

  • Idumah CI, Zurina M, Hassan A, Norhayani O, Shuhadah I (2019) Recently emerging trends in bone replacement polymer nanocomposites. Nanostructured Polymer Composites for Biomedical Applications 139–166.

  • Idumah CI. Ezeani EO, Nwuzor I.C (2020) A review: advancements in conductive polymers nanocomposites. Polym-Plast Technol Mater https://doi.org/10.1080/25740881.2020.1850783.

  • Idumah, CI. Progress in polymer nanocomposites for bone regeneration and engineering. Polymers and Polymer Composites, 0967391120913658.

  • Jiao E, Wu K, Liu Y, Lu M, Hu Z, Chen B, Shi J, Lu M (2021) Ultrarobust MXene-based laminated paper with excellent thermal conductivity and flame retardancy. Compos A Appl Sci Manuf 146:106417

    Google Scholar 

  • Jin X, Wang J, Dai L, Liu X, Li L, Yang Y, Cao Y, Wang W, Wu H, Guo S (2020) Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380:122475

    Google Scholar 

  • Li Z, Wang L, Sun D, Zhang Y, Liu B, Hu Q, Zhou A (2015) Synthesis and thermal stability of two-dimensional carbide MXene Ti 3 C 2. Mater Sci Eng B 191:33–40

    Google Scholar 

  • Li Z, Lira SIM, Zhang L, Exposito DF, Heeralal VB, Wang DY (2018) Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin. Polym Degrad Stabil 157:119–130

    Google Scholar 

  • Li L, Liu X, Wang J, Yang Y, Cao Y, Wang W (2019) New application of MXene in polymer composites toward remarkable anti-dripping performance for flame retardancy. Compos. Part A-Appl. S. 127:105649

    Google Scholar 

  • Liang C, Qiu H, Song P, Shi X, Kong J, Gu J (2020) Ultra-light MXene aerogel/wood-derived porous carbon composites with wall-like “mortar/brick” structures for electromagnetic interference shielding. Science Bulletin 65:616–622

    Google Scholar 

  • Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Advanced Composites and Hybrid Materials

  • Lin B, Yuen ACY, Li A, Zhang Y, Chen TBY, Yu B, Lee EWM, Peng S, Yang W, Lu HD, Chan QN, Yeoh GH, Wang CH (2020) MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J. Hazard. Mater. 381:120952

    Google Scholar 

  • Lin B, Chun A, Yuen Y, Bo T, Chen Y, Yu B, Yang W, Zhang J, YaoY WuS, Wang C, Yeoh G (2021) Experimental and numerical perspective on the fire performance of MXene/Chitosan/Phytic acid coated flexible polyurethane foam. Scientific Reports 11:4684

    Google Scholar 

  • Liu J, Zhang HB, Sun R, Liu Y, Liu Z, Zhou A, Yu ZZ (2017) Hydrophobic, Flexible, and Lightweight MXene Foams for High-Performance Electromagnetic-Interference Shielding. Adv Mater 29:1702367

    Google Scholar 

  • Liu C, Wu W, Shi Y, Yang F, Liu M, Chen Z, Yu B, Feng Y (2020) Creating MXene/reduced graphene oxide hybrid towards highly fire safe thermoplastic polyurethane nanocomposites. Composites Part B: Eng 203:108486

    Google Scholar 

  • Lu H-D (2017) Simultaneous enhancements in the mechanical, thermal stability, and flame retardant properties of poly (1,4-butylene terephthalate) nanocomposites with a novel phosphorus–nitrogen-containing polyhedral oligomeric silsesquioxane. RSC Adv 7:54021–54030

    Google Scholar 

  • Lu J, Zhang Y, Tao Y, Wang B, Cheng W, Jie G, Song L, Hu Y (2020) Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance. J Colloid Interf Sci 588:164–174

    Google Scholar 

  • Luo Y, Xie Y, Jiang H, Chen Y, Zhang L, Sheng X, Xie D, Wu H, Mei Y (2021) Flame-retardant and form-stable phase change composites based on MXene with high thermostability and thermal conductivity for thermal energy storage. Chem Eng J Part 3 42:130466

    Google Scholar 

  • Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th Anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26:992–1005

    Google Scholar 

  • Ning H, Ma Z, Zhang Z, Zhang D, Wang Y (2021) A novel multifunctional flame retardant MXene/nanosilica hybrid for poly (vinyl alcohol) with simultaneously improved mechanical properties. New J Chem 45:4292–4302

    Google Scholar 

  • Nwuzor IC, Idumah CI, Nwanonenyi SC, Ezeani OE (2021) Emerging trends in self-polishing anti-fouling coatings for marine environment. Saf Extreme Environ 3:9–25

    Google Scholar 

  • Pan Y, Fu L, Zhou Q, Wen Z, Lin CT, Yu J, Wang W, Zhao H (2020) Flammability, thermal stability and mechanical properties of polyvinyl alcohol nanocomposites reinforced with delaminated Ti3C2Tx (MXene). Polym Compos 41:210–218

    Google Scholar 

  • Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH (2019) Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48:72–133

    Google Scholar 

  • Sheng X, Li S, Zhao Y, Zhai D, Zhang L, Lu X (1964) Synergistic effects of two-dimensional MXene and ammonium polyphosphate on enhancing the fire safety of polyvinyl alcohol composite aerogels. Polymers 2019:11

    Google Scholar 

  • Shi Y, Liu C, Liu L, Fu L, Yu B, Lv Y, Yang F, Song P (2019) Strengthening, toughing and thermally stable ultra-thin MXene nanosheets/polypropylene nanocomposites via nanoconfinement. Chem. Eng. J. 378:122267

    Google Scholar 

  • Shi Y, Liu C, Duan Z, Yu B, Liu M, Song P (2020) Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem Eng J 399:125829

    Google Scholar 

  • Si JY, Tawiah B, Sun WL, Lin B, Wang C, Yuen ACY, Yu B, Li A, Yang W, Lu HD, Chan QN, Yeoh GH (2019) Functionalization of MXene nanosheets for polystyrene towards high thermal stability and flame retardant properties. Polymers 11:976

    Google Scholar 

  • Syamsai R, Kollu P, Jeong SK, Grace AN (2017) Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications. Ceram Int 43:13119–13126

    Google Scholar 

  • Wang H (2021) Engineering MXene surface with POSS for reducing fire hazards of polystyrene with enhanced thermal stability. J. Hazard. Mater. 401:123342

    Google Scholar 

  • Wang NN, Wang H, Wang YY, Wei YH, Si JY, Yuen ACY, Xie JS, Yu B, Zhu SE, Lu HD, Yang W, Chan QN, Yeoh GH (2019a) Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl Mater Interfaces 11:40512–40523

    Google Scholar 

  • Wang N, Wang H, Wang Y, Wei Y, Si J, Yuen A, Xie J, Yu B, Zhu S, Lu H, Yang W, Chan Q, Yeoh G (2019b) Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl Mater Interfaces 43:40512–40523

    Google Scholar 

  • Wojciechowska A, Karwowska E, Gloc M, Wozniak J, Petrus M, Przybyszewski B, Wojciechowski T, Jastrzebska A (2020) Controlling the porosity and biocidal properties of the chitosan-hyaluronate matrix hydrogel nanocomposites by the addition of 2DTi3C2Tx MXene. Materials 13:4587

    Google Scholar 

  • Xu W, Wang G, Xu J, Liu Y, Chen R, Yan H (2019) Modification of diatomite with melamine coated zeolitic imidazolate framework-8 as an effective flame retardant to enhance flame retardancy and smoke suppression of rigid polyurethane foam. J. Hazard. Mater. 379:120819

    Google Scholar 

  • Xue T, Fan W, Zhang X, Zhao X, Yang F, Liu T (2021) Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. Composites Part B: Engineering 219:108963

    Google Scholar 

  • Yeoh GH (2019) Interface decoration of exfoliated MXene ultra-thin nanosheets for fire and smoke suppressions of thermoplastic polyurethane elastomer. J Hazard Mater 374:110–119

    Google Scholar 

  • Zhang Y, El-Demellawi J, Jiang Q, Ge G, Liang H, Lee K, Dong X, Alshareef H (2020) MXene hydrogels: fundamentals and applications. Chem Soc Rev 49:7229–7251

    Google Scholar 

  • Zhang Y, Yu J, Lu J, Zhu C, Qi D (2021) Facile construction of 2D MXene (Ti3C2Tx) based aerogels with effective fire-resistance and electromagnetic interference shielding performance. J Alloys Compd 870:159442

    Google Scholar 

  • Zhang Y, Yan H, Feng G, Liu R, Yang K, Feng W, Zhang S, He C (2021) Non-aromatic Si, P, -containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature. Composites Part B: Eng 109043.

  • Zhou Y, Lin Y, Tawiah B, Sun J, Yuen RKK, Fei B (2021) DOPO-decorated two-dimensional MXene nanosheets for flame-retardant, ultraviolet-protective, and reinforced polylactide composites. ACS Appl Mater Interfaces 13:21876–21887

    Google Scholar 

  • Zhu S, Wang F, Liu J, Wang L, Wang C, Chun A, Yuen Y, Bo T, Chen Y, Kabir I, Yeoh G, Lu H, Yang W (2021) BODIPY coated on MXene nanosheets for improving mechanical and fire safety properties of ABS resin. Compos B Eng 223:109130

    Google Scholar 

Download references

Acknowledgements

UNIZIK Awka is acknowledged.

Funding

No funding is reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Igwe Idumah.

Ethics declarations

Conflict of interest

No conflict of interests is reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idumah, C.I., Ezeani, E.O., Ezika, A.C. et al. Recent advancements in flame retardancy of MXene polymer nanoarchitectures. Saf. Extreme Environ. 3, 253–273 (2021). https://doi.org/10.1007/s42797-021-00046-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42797-021-00046-w

Keywords

Navigation