Skip to main content

Advertisement

Log in

Detection of the international lineage ST71 of methicillin-resistant Staphylococcus pseudintermedius in two cities in Rio de Janeiro State

  • Veterinary Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus pseudintermedius is the main coagulase-positive staphylococci associated with canine skin/soft tissue infections (SSTI), otitis externa, and surgical site infections. The international spread of an epidemic and multiresistant lineage of methicillin-resistant Staphylococcus pseudintermedius (MRSP), the so-called European clone—displaying sequence type (ST) 71—requires attention. The first isolation of an MRSP ST71 isolate in South America was reported in Rio de Janeiro city, in 2010; however, a limited number of canine isolates were analyzed. Thus, to have a better panel of the MRSP spread in this city, we were stimulated to continue this study and search for the presence of MRSP in 282 colonized or infected dogs in the city of Rio de Janeiro. Among the MRSP isolates collected (N = 17; 6.1%), the pulsed-field gel electrophoresis (PFGE) patterns were similar to those of European clone. All 17 isolates were classified as ST71 by multilocus sequence typing (MLST). In order to assess whether isolates of MRSP ST71 may have also spread to the Rio de Janeiro state countryside, we collected samples from 124 infected dogs in the city of Campos dos Goytacazes (232 km away from Rio de Janeiro city). Our data showed the presence of ST71 lineage in one isolate among three MRSP detected. S. pseudintermedius was isolated from 40.6% of the clinical samples (N = 165/406). A relatively high incidence of methicillin resistance, detected by a PCR-based method, was found in 12.1% of the S. pseudintermedius recovered from animals (N = 20/165). The resistance profile of these isolates was similar to that described for the international ST71 strains whose genomes are publicly available in the GenBank. The prospect of ST71 isolates being resistant to virtually all antimicrobials used in veterinary medicine is alarming and should be considered a central issue considering that MRSP ST71 spreads over large geographic distances and its transmission from animals to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Richards AC, O’Shea M, Beard PM et al (2018) Staphylococcus pseudintermedius surface protein L (SpsL) is required for abscess formation in a murine model of cutaneous infection. Infect Immun 86(11). https://doi.org/10.1128/IAI.00631-18

  2. Pires Dos Santos T, Damborg P, Moodley A, Guardabassi L (2016) Systematic review on global epidemiology of methicillin-resistant Staphylococcus pseudintermedius: inference of population structure from multilocus sequence typing data. Front Microbiol 7:1599. https://doi.org/10.3389/fmicb.2016.01599

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kjellman EE, Slettemeås JS, Small H, Sunde M (2015) Methicillin-resistant Staphylococcus pseudintermedius (MRSP) from healthy dogs in Norway - occurrence, genotypes and comparison to clinical MRSP. Microbiologyopen 4(6):857–866. https://doi.org/10.1002/mbo3.258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bergot M, Martins-Simoes P, Kilian H et al (2018) Evolution of the population structure of Staphylococcus pseudintermedius in France. Front Microbiol 9:3055. https://doi.org/10.3389/fmicb.2018.03055

    Article  PubMed  PubMed Central  Google Scholar 

  5. Quitoco IMZ, Ramundo MS, Silva-Carvalho MC et al (2013) First report in South America of companion animal colonization by the USA1100 clone of community-acquired methicillin-resistant Staphylococcus aureus (ST30) and by the European clone of methicillin-resistant Staphylococcus pseudintermedius (ST71). BMC Res Notes 6:336. https://doi.org/10.1186/1756-0500-6-336

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lehner G, Linek M, Bond R et al (2014) Case-control risk factor study of methicillin-resistant Staphylococcus pseudintermedius (MRSP) infection in dogs and cats in Germany. Vet Microbiol 168(1):154–160. https://doi.org/10.1016/j.vetmic.2013.10.023

    Article  PubMed  Google Scholar 

  7. Brooks MR, Padilla-Vélez L, Khan TA et al (2020) Prophage-mediated disruption of genetic competence in Staphylococcus pseudintermedius. mSystems 5(1). https://doi.org/10.1128/mSystems.00684-19

  8. Menandro ML, Dotto G, Mondin A, Martini M, Ceglie L, Pasotto D (2019) Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius from symptomatic companion animals in Northern Italy: Clonal diversity and novel sequence types. Comp Immunol Microbiol Infect Dis 66:101331. https://doi.org/10.1016/j.cimid.2019.101331

    Article  PubMed  Google Scholar 

  9. Lozano C, Rezusta A, Ferrer I et al (2017) Staphylococcus pseudintermedius human infection cases in Spain: dog-to-human transmission. Vector Borne Zoonotic Dis 17(4):268–270. https://doi.org/10.1089/vbz.2016.2048

    Article  PubMed  Google Scholar 

  10. Silva MB, Ferreira FA, Garcia LNN et al (2015) An evaluation of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of Staphylococcus pseudintermedius isolates from canine infections. J Vet Diagn Invest 27(2):231–235. https://doi.org/10.1177/1040638715573297

    Article  PubMed  CAS  Google Scholar 

  11. Sasaki T, Tsubakishita S, Tanaka Y et al (2010) Multiplex-PCR method for species identification of coagulase-positive staphylococci. J Clin Microbiol 48(3):765–769. https://doi.org/10.1128/JCM.01232-09

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Oliveira DC, de Lencastre H (2002) Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46(7):2155–2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tenover FC, Arbeit RD, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239. https://doi.org/10.1128/jcm.33.9.2233-2239.1995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Solyman SM, Black CC, Duim B et al (2013) Multilocus sequence typing for characterization of Staphylococcus pseudintermedius. J Clin Microbiol 51(1):306–310. https://doi.org/10.1128/JCM.02421-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Larsen MV, Cosentino S, Rasmussen S et al (2012) Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50(4):1355–1361. https://doi.org/10.1128/JCM.06094-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bortolaia V, Kaas RS, Ruppe E et al (2020) ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75(12):3491–3500. https://doi.org/10.1093/jac/dkaa345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72(10):2764–2768. https://doi.org/10.1093/jac/dkx217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. van Damme CMM, Broens EM, Auxilia ST, Schlotter YM (2020) Clindamycin resistance of skin derived Staphylococcus pseudintermedius is higher in dogs with a history of antimicrobial therapy. Vet Dermatol 31(4):305-e75. https://doi.org/10.1111/vde.12854

    Article  PubMed  PubMed Central  Google Scholar 

  19. Penna B, Varges R, Medeiros L, Martins GM, Martins RR, Lilenbaum W (2009) In vitro antimicrobial susceptibility of staphylococci isolated from canine pyoderma in Rio de Janeiro. Brazil Braz J Microbiol 40(3):490–494. https://doi.org/10.1590/S1517-83822009000300011

    Article  PubMed  CAS  Google Scholar 

  20. Penna B, Varges R, Medeiros L, Martins GM, Martins RR, Lilenbaum W (2010) Species distribution and antimicrobial susceptibility of staphylococci isolated from canine otitis externa. Vet Dermatol 21(3):292–296. https://doi.org/10.1111/j.1365-3164.2009.00842.x

    Article  PubMed  Google Scholar 

  21. Faires MC, Tater KC, Weese JS (2009) An investigation of methicillin-resistant Staphylococcus aureus colonization in people and pets in the same household with an infected person or infected pet. J Am Vet Med Assoc 235(5):540–543. https://doi.org/10.2460/javma.235.5.540

    Article  PubMed  Google Scholar 

  22. Hillier A, Lloyd DH, Weese JS et al (2014) Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet Dermatol 25(3):163-e43. https://doi.org/10.1111/vde.12118

    Article  PubMed  Google Scholar 

  23. Moodley A, Damborg P, Nielsen SS (2014) Antimicrobial resistance in methicillin susceptible and methicillin resistant Staphylococcus pseudintermedius of canine origin: literature review from 1980 to 2013. Vet Microbiol 171(3–4):337–341. https://doi.org/10.1016/j.vetmic.2014.02.008

    Article  PubMed  CAS  Google Scholar 

  24. Youn J-H, Yoon JW, Koo HC, Lim S-K, Park YH (2011) Prevalence and antimicrogram of Staphylococcus intermedius group isolates from veterinary staff, companion animals, and the environment in veterinary hospitals in Korea. J Vet Diagn Invest 23(2):268–274. https://doi.org/10.1177/104063871102300211

    Article  PubMed  Google Scholar 

  25. Perreten V, Kadlec K, Schwarz S et al (2010) Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother 65(6):1145–1154. https://doi.org/10.1093/jac/dkq078

    Article  PubMed  CAS  Google Scholar 

  26. Kmieciak W, Szewczyk EM (2018) Are zoonotic Staphylococcus pseudintermedius strains a growing threat for humans? Folia Microbiol (Praha) 63(6):743–747. https://doi.org/10.1007/s12223-018-0615-2

    Article  CAS  Google Scholar 

  27. Blondeau LD, Rubin JE, Deneer H et al (2020) Bacteremia with Staphylococcus pseudintermedius in a 4 month old pediatric oncology patient. J Chemother 32(5):260–262. https://doi.org/10.1080/1120009X.2020.1773627

    Article  PubMed  CAS  Google Scholar 

  28. Diaz MA, Gardner LB, Libertin CR (2019) Staphylococcus pseudintermedius catheter-related bloodstream infection after exposure to domestic dogs and a cat. BMJ Case Rep 12(12). https://doi.org/10.1136/bcr-2019-231489

  29. Gagetti P, Errecalde L, Wattam AR et al (2020) Characterization of the first mecA-positive multidrug-resistant Staphylococcus pseudintermedius Isolated from an Argentinian patient. Microb Drug Resist 26(7):717–721. https://doi.org/10.1089/mdr.2019.0308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kalhoro DH, Kalhoro MS, Mangi MH et al (2019) Antimicrobial resistance of staphylococci and streptococci isolated from dogs. Trop Biomed 36(2):468–474

    PubMed  CAS  Google Scholar 

  31. Bourély C, Cazeau G, Jarrige N et al (2019) Antimicrobial resistance patterns of bacteria isolated from dogs with otitis. Epidemiol Infect 147:e121. https://doi.org/10.1017/S0950268818003278

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grönthal T, Ollilainen M, Eklund M et al (2015) Epidemiology of methicillin resistant Staphylococcus pseudintermedius in guide dogs in Finland. Acta Vet Scand 57:37. https://doi.org/10.1186/s13028-015-0129-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Paul NC, Moodley A, Ghibaudo G, Guardabassi L (2011) Carriage of methicillin-resistant Staphylococcus pseudintermedius in small animal veterinarians: indirect evidence of zoonotic transmission. Zoonoses Public Health 58(8):533–539. https://doi.org/10.1111/j.1863-2378.2011.01398.x

    Article  PubMed  CAS  Google Scholar 

  34. Gagetti P, Wattam AR, Giacoboni G et al (2019) Identification and molecular epidemiology of methicillin resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples in Argentina. BMC Vet Res 15(1):264. https://doi.org/10.1186/s12917-019-1990-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant # 307672/2019–0, and by Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), grants E-26/010.101098/2018, E-26/010.001280/2016, E-26/010.002435/2019, and E-26/200.952/2021. This study was also financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

BP collected animal samples, carried out strain isolation and molecular characterization, and wrote the manuscript. MBS collected animal samples, carried out strain isolation and identification, and wrote the draft of the manuscript. AMNB performed the genomic database construction and genomics analysis and contributed to the final version of the manuscript. FAF and MSR performed molecular typing by MLST. MCSC and RFR performed molecular characterization by PFGE. AMSF, BF, and OVM were responsible for the study design and wrote the final version of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Bruno Penna.

Ethics declarations

Ethics approval

This study was approved by the animal ethics committees from Universidade Federal Fluminense (#218/2010) and Universidade Estadual do Norte Fluminense (#145/2011).

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39.1 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penna, B., Silva, M.B., Botelho, A.M.N. et al. Detection of the international lineage ST71 of methicillin-resistant Staphylococcus pseudintermedius in two cities in Rio de Janeiro State. Braz J Microbiol 53, 2335–2341 (2022). https://doi.org/10.1007/s42770-022-00852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00852-9

Keywords

Navigation