Skip to main content

Advertisement

Log in

Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp.

  • Clinical Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

In recent years, the intensification of the use of immunosuppressive therapies has increased the incidence of invasive infections caused by opportunistic fungi. Considering that, the spread of azole resistance and amphotericin B (AmB) inefficiency against some clinical and environmental isolates has been described. Thus, to avoid a global problem when controlling fungal infections and critical failures in medicine, and food security, new approaches for drug target identification and for the development of new treatments that are more effective against pathogenic fungi are desired. Recent studies indicate that protein acetylation is present in hundreds of proteins of different cellular compartments and is involved in several biological processes, i.e., metabolism, translation, gene expression regulation, and oxidative stress response, from prokaryotes and eukaryotes, including fungi, demonstrating that lysine acetylation plays an important role in essential mechanisms. Lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), the two enzyme families responsible for regulating protein acetylation levels, have been explored as drug targets for the treatment of several human diseases and infections. Aspergilli have on average 8 KAT genes and 11 KDAC genes in their genomes. This review aims to summarize the available knowledge about Aspergillus spp. azole resistance mechanisms and the role of lysine acetylation in the control of biological processes in fungi. We also want to discuss the lysine acetylation as a potential target for fungal infection treatment and drug target discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13. https://doi.org/10.1126/scitranslmed.3004404

    Article  CAS  PubMed  Google Scholar 

  2. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360:739–742. https://doi.org/10.1126/science.aap7999

    Article  CAS  PubMed  Google Scholar 

  3. Tudela JLR, Denning DW (2017) Recovery from serious fungal infections should be realisable for everyone. Lancet Infect Dis 17:1111–1113. https://doi.org/10.1016/S1473-3099(17)30319-5

    Article  PubMed  Google Scholar 

  4. Almeida F, Rodrigues ML, Coelho C (2019) The still underestimated problem of fungal diseases worldwide. Front Microbiol 10:214. https://doi.org/10.3389/fmicb.2019.00214

    Article  PubMed  PubMed Central  Google Scholar 

  5. Casadevall A (2018) Fungal diseases in the 21st century: the near and far horizons. Pathog Immun 3:183–196. https://doi.org/10.20411/pai.v3i2.249

    Article  PubMed  PubMed Central  Google Scholar 

  6. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A (2017) The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 17:e383–e392. https://doi.org/10.1016/S1473-3099(17)30316-X

    Article  PubMed  Google Scholar 

  7. Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latge J-P, Steinbach WJ (2015) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5:a019786–a019786. https://doi.org/10.1101/cshperspect.a019786

    Article  CAS  PubMed Central  Google Scholar 

  8. Kwon-Chung KJ, Sugui JA (2013) Aspergillus fumigatus—what makes the species a ubiquitous human fungal pathogen? PLoS Pathog 9:e1003743. https://doi.org/10.1371/journal.ppat.1003743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692. https://doi.org/10.1099/mic.0.2007/007641-0

    Article  CAS  PubMed  Google Scholar 

  10. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400. https://doi.org/10.1038/nrd3674

    Article  CAS  PubMed  Google Scholar 

  11. Downey M, Baetz K (2016) Building a KATalogue of acetyllysine targeting and function. Brief Funct Genomics 15:109–118. https://doi.org/10.1093/bfgp/elv045

    Article  CAS  PubMed  Google Scholar 

  12. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536–550. https://doi.org/10.1038/nrm3841

    Article  CAS  PubMed  Google Scholar 

  13. Kuchler K, Jenull S, Shivarathri R, Chauhan N (2016) Fungal KATs/KDACs: a new highway to better antifungal drugs? PLoS Pathog 12:e1005938. https://doi.org/10.1371/journal.ppat.1005938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux J-P, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA (2018) Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 24:e1–e38. https://doi.org/10.1016/j.cmi.2018.01.002

    Article  PubMed  Google Scholar 

  15. Miceli MH, Kauffman CA (2015) Isavuconazole: a new broad-Spectrum triazole antifungal agent. Clin Infect Dis 61:1558–1565. https://doi.org/10.1093/cid/civ571

    Article  CAS  PubMed  Google Scholar 

  16. Lass-Flörl C (2011) Triazole antifungal agents in invasive fungal infections. Drugs 71:2405–2419. https://doi.org/10.2165/11596540-000000000-00000

    Article  PubMed  Google Scholar 

  17. Verweij PE, Chowdhary A, Melchers WJG, Meis JF (2016) Azole resistance in Aspergillus fumigatus : can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 62:362–368. https://doi.org/10.1093/cid/civ885

    Article  CAS  PubMed  Google Scholar 

  18. Snelders E, van der Lee HAL, Kuijpers J, Rijs AJMM, Varga J, Samson RA, Mellado E, Donders ART, Melchers WJG, Verweij PE (2008) Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 5:e219. https://doi.org/10.1371/journal.pmed.0050219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arendrup MC, Mavridou E, Mortensen KL, Snelders E, Frimodt-Møller N, Khan H, Melchers WJG, Verweij PE (2010) Development of azole resistance in aspergillus fumigatus during azole therapy associated with change in virulence. PLoS One. https://doi.org/10.1371/journal.pone.0010080

  20. Lamoth F (2016) Aspergillus fumigatus-related species in clinical practice. Front Microbiol 7:683. https://doi.org/10.3389/fmicb.2016.00683

    Article  PubMed  PubMed Central  Google Scholar 

  21. Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE (2016) Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc B Biol Sci 371:20150460. https://doi.org/10.1098/rstb.2015.0460

    Article  CAS  Google Scholar 

  22. Resendiz Sharpe A, Lagrou K, Meis JF, Chowdhary A, Lockhart SR, Verweij PE (2018) Triazole resistance surveillance in Aspergillus fumigatus. Med Mycol 56:S83–S92. https://doi.org/10.1093/mmy/myx144

    Article  CAS  Google Scholar 

  23. Mellado E, Diaz-Guerra TM, Cuenca-Estrella M, Rodriguez-Tudela JL (2001) Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. J Clin Microbiol 39:2431–2438. https://doi.org/10.1128/JCM.39.7.2431-2438.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hagiwara D, Watanabe A, Kamei K, Goldman GH (2016) Epidemiological and genomic landscape of azole resistance mechanisms in Aspergillus fungi. Front Microbiol 7:1382. https://doi.org/10.3389/fmicb.2016.01382

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bodey GP (1992) Azole antifungal agents. Clin Infect Dis 14:S161–S169. https://doi.org/10.1093/clinids/14.Supplement_1.S161

    Article  PubMed  Google Scholar 

  26. Snelders E, Karawajczyk A, Schaftenaar G, Verweij PE, Melchers WJG (2010) Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob Agents Chemother 54:2425–2430. https://doi.org/10.1128/AAC.01599-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Snelders E, Camps SMT, Karawajczyk A, Schaftenaar G, Kema GHJ, van der Lee HA, Klaassen CH, Melchers WJG, Verweij PE (2012) Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 7:e31801. https://doi.org/10.1371/journal.pone.0031801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Linden JWM, Camps SMT, Kampinga GA, Arends JPA, Debets-Ossenkopp YJ, Haas PJA, Rijnders BJA, Kuijper EJ, van Tiel FH, Varga J, Karawajczyk A, Zoll J, Melchers WJG, Verweij PE (2013) Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis 57:513–520. https://doi.org/10.1093/cid/cit320

    Article  CAS  PubMed  Google Scholar 

  29. Howard SJ, Pasqualotto AC, Anderson MJ, Leatherbarrow H, Albarrag AM, Harrison E, Gregson L, Bowyer P, Denning DW (2013) Major variations in Aspergillus fumigatus arising within aspergillomas in chronic pulmonary aspergillosis. Mycoses 56:434–441. https://doi.org/10.1111/myc.12047

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez-Tudela JL, Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Monzon A, Cuenca-Estrella M (2008) Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob Agents Chemother 52:2468–2472. https://doi.org/10.1128/AAC.00156-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Howard SJ, Cerar D, Anderson MJ, Albarrag A, Fisher MC, Pasqualotto AC, Laverdiere M, Arendrup MC, Perlin DS, Denning DW (2009) Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure1. Emerg Infect Dis 15:1068–1076. https://doi.org/10.3201/eid1507.090043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mellado E, Garcia-Effron G, Alcazar-Fuoli L, Cuenca-Estrella M, Rodriguez-Tudela JL (2004) Substitutions at methionine 220 in the 14α-sterol demethylase (Cyp51A) of Aspergillus fumigatus are responsible for resistance in vitro to azole antifungal drugs. Antimicrob Agents Chemother 48:2747–2750. https://doi.org/10.1128/AAC.48.7.2747-2750.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu M, Zheng N, Li D, Zheng H, Zhang L, Ge H, Liu W (2016) cyp51A -based mechanism of azole resistance in Aspergillus fumigatus : illustration by a new 3D structural model of Aspergillus fumigatus CYP51A protein. Med Mycol 54:400–408. https://doi.org/10.1093/mmy/myv102

    Article  CAS  PubMed  Google Scholar 

  34. Mellado E, Garcia-Effron G, Alcazar-Fuoli L, Melchers WJG, Verweij PE, Cuenca-Estrella M, Rodriguez-Tudela JL (2007) A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother 51:1897–1904. https://doi.org/10.1128/AAC.01092-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vermeulen E, Maertens J, Schoemans H, Lagrou K (2012) Azole-resistant Aspergillus fumigatus due to TR46/Y121F/T289A mutation emerging in Belgium, July 2012. Eurosurveillance. https://doi.org/10.2807/ese.17.48.20326-en

  36. Alvarez-Moreno C, Lavergne R-A, Hagen F, Morio F, Meis JF, Le Pape P (2017) Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Sci Rep 7:45631. https://doi.org/10.1038/srep45631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hare RK, Gertsen JB, Astvad KMT, Degn KB, Løkke A, Stegger M, Andersen PS, Kristensen L, Arendrup MC (2019) In vivo selection of a unique tandem repeat mediated azole resistance mechanism (TR 120 ) in Aspergillus fumigatus cyp51A, Denmark. Emerg Infect Dis 25:577–580. https://doi.org/10.3201/eid2503.180297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Verweij PE, Kema GHJ, Zwaan B, Melchers WJ (2013) Triazole fungicides and the selection of resistance to medical triazoles in the opportunistic mould Aspergillus fumigatus. Pest Manag Sci 69:165–170. https://doi.org/10.1002/ps.3390

    Article  CAS  PubMed  Google Scholar 

  39. Chowdhary A, Kathuria S, Xu J, Meis JF (2013) Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog 9:e1003633. https://doi.org/10.1371/journal.ppat.1003633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rajendran R, Mowat E, McCulloch E, Lappin DF, Jones B, Lang S, Majithiya JB, Warn P, Williams C, Ramage G (2011) Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother 55:2092–2097. https://doi.org/10.1128/AAC.01189-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nascimento AM, Goldman GH, Park S, Marras SAE, Delmas G, Oza U, Lolans K, Dudley MN, Mann PA, Perlin DS (2003) Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother 47:1719–1726. https://doi.org/10.1128/AAC.47.5.1719-1726.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, Anderson JB, Colombo AL, Arthington-Skaggs BA, Goldman MHS, Goldman GH (2004) In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother 48:4405–4413. https://doi.org/10.1128/AAC.48.11.4405-4413.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A, Gonoi T, Watanabe A, Kamei K, Shintani T, Moye-Rowley WS, Kawamoto S, Gomi K (2017) A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLoS Pathog 13:e1006096. https://doi.org/10.1371/journal.ppat.1006096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Paul S, Diekema D, Moye-Rowley WS (2013) Contributions of Aspergillus fumigatus ATP-binding cassette transporter proteins to drug resistance and virulence. Eukaryot Cell 12:1619–1628. https://doi.org/10.1128/EC.00171-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Camps SMT, Dutilh BE, Arendrup MC, Rijs AJMM, Snelders E, Huynen MA, Verweij PE, Melchers WJG (2012) Discovery of a hapE mutation that causes azole resistance in Aspergillus fumigatus through whole genome sequencing and sexual crossing. PLoS One 7:e50034. https://doi.org/10.1371/journal.pone.0050034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, Müller C, Bracher F, Bowyer P, Haas H, Brakhage AA, Bromley MJ (2016) Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog 12:e1005775. https://doi.org/10.1371/journal.ppat.1005775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Willger SD, Puttikamonkul S, Kim K-H, Burritt JB, Grahl N, Metzler LJ, Barbuch R, Bard M, Lawrence CB, Cramer RA (2008) A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog 4:e1000200. https://doi.org/10.1371/journal.ppat.1000200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hagiwara D, Watanabe A, Kamei K (2016) Sensitisation of an azole-resistant Aspergillus fumigatus strain containing the Cyp51A-related mutation by deleting the SrbA gene. Sci Rep 6:38833. https://doi.org/10.1038/srep38833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei X, Chen P, Gao R, Li Y, Zhang A, Liu F, Lu L (2017) Screening and characterization of a non-cyp51A mutation in an Aspergillus fumigatus cox10 strain conferring azole resistance. Antimicrob Agents Chemother 61. https://doi.org/10.1128/AAC.02101-16

  50. Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL (2016) Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses 59:198–219. https://doi.org/10.1111/myc.12469

    Article  CAS  PubMed  Google Scholar 

  51. Perlin DS (2015) Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci 1354:1–11. https://doi.org/10.1111/nyas.12831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiménez-Ortigosa C, Moore C, Denning DW, Perlin DS (2017) Emergence of echinocandin resistance due to a point mutation in the fks1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis. Antimicrob Agents Chemother 61:e01277–e01217. https://doi.org/10.1128/AAC.01277-17

    Article  PubMed  PubMed Central  Google Scholar 

  53. Narita T, Weinert BT, Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 20:156–174. https://doi.org/10.1038/s41580-018-0081-3

    Article  CAS  PubMed  Google Scholar 

  54. Allfrey VG, Mirsky AE (1964) Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 144:559–559. https://doi.org/10.1126/science.144.3618.559

    Article  CAS  PubMed  Google Scholar 

  55. Castaño-Cerezo S, Bernal V, Röhrig T, Termeer S, Cánovas M (2015) Regulation of acetate metabolism in Escherichia coli BL21 by protein Nε-lysine acetylation. Appl Microbiol Biotechnol 99:3533–3545. https://doi.org/10.1007/s00253-014-6280-8

    Article  CAS  PubMed  Google Scholar 

  56. Moretti NS, Cestari I, Anupama A, Stuart K, Schenkman S (2018) Comparative proteomic analysis of lysine acetylation in trypanosomes. J Proteome Res 17:374–385. https://doi.org/10.1021/acs.jproteome.7b00603

    Article  CAS  PubMed  Google Scholar 

  57. Hong Y, Cao X, Han Q, Yuan C, Zhang M, Han Y, Zhu C, Lin T, Lu K, Li H, Fu Z, Lin J (2016) Proteome-wide analysis of lysine acetylation in adult Schistosoma japonicum worm. J Proteome 148:202–212. https://doi.org/10.1016/j.jprot.2016.08.008

    Article  CAS  Google Scholar 

  58. Hartl M, Füßl M, Boersema PJ, Jost J, Kramer K, Bakirbas A, Sindlinger J, Plöchinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I (2017) Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 13:949. https://doi.org/10.15252/msb.20177819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Weinert BT, Wagner SA, Horn H, Henriksen P, Liu WR, Olsen JV, Jensen LJ, Choudhary C (2011) Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 4:ra48. https://doi.org/10.1126/scisignal.2001902

    Article  CAS  PubMed  Google Scholar 

  60. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A, Choudhary C, Lundby C, Olsen JV (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2:419–431. https://doi.org/10.1016/j.celrep.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weinert BT, Iesmantavicius V, Moustafa T, Schölz C, Wagner SA, Magnes C, Zechner R, Choudhary C (2014) Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol Syst Biol 10:716. https://doi.org/10.1002/msb.134766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li Y, Li H, Sui M, Li M, Wang J, Meng Y, Sun T, Liang Q, Suo C, Gao X, Li C, Li Z, Du W, Zhang B, Sai S, Zhang Z, Ye J, Wang H, Yue S, Li J, Zhong M, Chen C, Qi S, Lu L, Li D, Ding C (2019) Fungal acetylome comparative analysis identifies an essential role of acetylation in human fungal pathogen virulence. Commun Biol 2:154. https://doi.org/10.1038/s42003-019-0419-1

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhou T, Chung Y, Chen J, Chen Y (2016) Site-specific identification of lysine acetylation stoichiometries in mammalian cells. J Proteome Res 15:1103–1113. https://doi.org/10.1021/acs.jproteome.5b01097

    Article  CAS  PubMed  Google Scholar 

  64. Henriksen P, Wagner SA, Weinert BT, Sharma S, Bačinskaja G, Rehman M, Juffer AH, Walther TC, Lisby M, Choudhary C (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11:1510–1522. https://doi.org/10.1074/mcp.M112.017251

  65. Li D, Lv B, Tan L, Yang Q, Liang W (2016) Acetylome analysis reveals the involvement of lysine acetylation in diverse biological processes in Phytophthora sojae. Sci Rep 6:29897. https://doi.org/10.1038/srep29897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lv B, Yang Q, Li D, Liang W, Song L (2016) Proteome-wide analysis of lysine acetylation in the plant pathogen Botrytis cinerea. Sci Rep 6:29313. https://doi.org/10.1038/srep29313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie L, Fang W, Deng W, Yu Z, Li J, Chen M, Liao W, Xie J, Pan W (2016) Global profiling of lysine acetylation in human histoplasmosis pathogen Histoplasma capsulatum. Int J Biochem Cell Biol. https://doi.org/10.1016/j.biocel.2016.01.008

  68. Zhou S, Yang Q, Yin C, Liu L, Liang W (2016) Systematic analysis of the lysine acetylome in Fusarium graminearum. BMC Genomics 17:1019. https://doi.org/10.1186/s12864-016-3361-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zheng H, He Y, Zhou X, Qian G, Lv G, Shen Y, Liu J, Li D, Li X, Liu W (2016) Systematic analysis of the lysine succinylome in Candida albicans. J Proteome Res 15:3793–3801. https://doi.org/10.1021/acs.jproteome.6b00578

    Article  CAS  PubMed  Google Scholar 

  70. Lv Y (2017) Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus. PLoS One 12:7–9. https://doi.org/10.1371/journal.pone.0178603

    Article  CAS  Google Scholar 

  71. Wang ZK, Cai Q, Liu J, Ying SH, Feng MG (2017) Global insight into lysine acetylation events and their links to biological aspects in Beauveria bassiana, a fungal insect pathogen. Sci Rep 7:44360. https://doi.org/10.1038/srep44360

    Article  PubMed  PubMed Central  Google Scholar 

  72. Liang M, Zhang S, Dong L, Kou Y, Lin C, Dai W, Zhang L-H, Deng YZ (2018) Label-free quantitative proteomics of lysine acetylome identifies substrates of Gcn5 in Magnaporthe oryzae autophagy and epigenetic regulation. mSystems 3:e00270–e00218. https://doi.org/10.1128/msystems.00270-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu X, Liu T, Yang J, Chen L, Liu B, Wang L, Jin Q (2018) The first whole-cell proteome- and lysine-acetylome-based comparison between Trichophyton rubrum conidial and mycelial stages. J Proteome Res 17:1436–1451. https://doi.org/10.1021/acs.jproteome.7b00793

    Article  CAS  PubMed  Google Scholar 

  74. Wang G, Guo L, Liang W, Chi Z, Liu L (2017) Systematic analysis of the lysine acetylome reveals diverse functions of lysine acetylation in the oleaginous yeast Yarrowia lipolytica. AMB Express 7:94. https://doi.org/10.1186/s13568-017-0393-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J, Drogaris P, Lee E-H, Thibault P, Verreault A, Raymond M (2010) Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 16:774–780. https://doi.org/10.1038/nm.2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carrozza MJ, Utley RT, Workman JL, Côté J (2003) The diverse functions of histone acetyltransferase complexes. Trends Genet 19:321–329. https://doi.org/10.1016/S0168-9525(03)00115-X

    Article  CAS  PubMed  Google Scholar 

  77. Tang Y, Holbert MA, Wurtele H, Meeth K, Rocha W, Gharib M, Jiang E, Thibault P, Verreault A, Cole PA, Marmorstein R (2008) Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nat Struct Mol Biol 15:738–745. https://doi.org/10.1038/nsmb.1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120. https://doi.org/10.1146/annurev.biochem.70.1.81

    Article  CAS  PubMed  Google Scholar 

  79. Mizzen CA, Yang X-J, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD (1996) The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270. https://doi.org/10.1016/S0092-8674(00)81821-8

    Article  CAS  PubMed  Google Scholar 

  80. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai M-J, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198. https://doi.org/10.1038/38304

    Article  CAS  PubMed  Google Scholar 

  81. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508. https://doi.org/10.1016/j.cell.2006.03.033

    Article  CAS  PubMed  Google Scholar 

  82. Wang L, Tang Y, Cole PA, Marmorstein R (2008) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18:741–747. https://doi.org/10.1016/j.sbi.2008.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Brosch G, Loidl P, Graessle S (2008) Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 32:409–439. https://doi.org/10.1111/j.1574-6976.2007.00100.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ren J, Sang Y, Lu J, Yao Y-F (2017) Protein acetylation and its role in bacterial virulence. Trends Microbiol 25:768–779. https://doi.org/10.1016/j.tim.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  85. Yuan H, Marmorstein R (2012) Structural basis for Sirtuin activity and inhibition. J Biol Chem 287:42428–42435. https://doi.org/10.1074/jbc.R112.372300

  86. Troejer P, Brandtner EM, Brosch G, Loidl P, Galehr J, Linzmaier R, Haas H, Mair K, Tribus M, Graessle S (2003) Histone deacetylases in fungi: novel members, new facts. Nucleic Acids Res 31:3971–3981. https://doi.org/10.1093/nar/gkg473

    Article  CAS  Google Scholar 

  87. Itoh E, Shigemoto R, Oinuma K-I, Shimizu M, Masuo S, Takaya N (2017) Sirtuin A regulates secondary metabolite production by Aspergillus nidulans. J Gen Appl Microbiol 63:228–235. https://doi.org/10.2323/jgam.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  88. Van Dyke MW (2014) Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation. ChemMedChem 9:511–522. https://doi.org/10.1002/cmdc.201300444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713–a018713. https://doi.org/10.1101/cshperspect.a018713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Georgakopoulos P, Lockington RA, Kelly JM (2013) The Spt-Ada-Gcn5 acetyltransferase (SAGA) complex in Aspergillus nidulans. PLoS One. https://doi.org/10.1371/journal.pone.0065221

  91. Reyes-Dominguez Y, Narendja F, Berger H, Gallmetzer A, Fernandez-Martin R, Garcia I, Scazzocchio C, Strauss J (2008) Nucleosome positioning and histone H3 acetylation are independent processes in the Aspergillus nidulans prnD-prnB bidirectional promoter. Eukaryot Cell 7:656–663. https://doi.org/10.1128/EC.00184-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cánovas D, Marcos AT, Gacek A, Ramos MS, Gutiérrez G, Reyes-Domínguez Y, Strauss J (2014) The histone acetyltransferase GcnE (GCN5) plays a central role in the regulation of Aspergillus asexual development. Genetics 197:1175–1189. https://doi.org/10.1534/genetics.114.165688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nutzmann H-W, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schumann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci 108:14282–14287. https://doi.org/10.1073/pnas.1103523108

    Article  PubMed  Google Scholar 

  94. Lan H, Sun R, Fan K, Yang K, Zhang F, Nie XY, Wang X, Zhuang Z, Wang S (2016) The Aspergillus flavus histone acetyltransferase aflgcne regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity. Front Microbiol 7:1324. https://doi.org/10.3389/fmicb.2016.01324

    Article  PubMed  PubMed Central  Google Scholar 

  95. Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J, Cook RG, Lucchesi JC, Allis CD (1998) ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci 95:3561–3565. https://doi.org/10.1073/pnas.95.7.3561

    Article  CAS  PubMed  Google Scholar 

  96. Soukup AA, Chiang Y-M, Bok JW, Reyes-Dominguez Y, Oakley BR, Wang CCC, Strauss J, Keller NP (2012) Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 86:314–330. https://doi.org/10.1111/j.1365-2958.2012.08195.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV, Linz JE (2011) Willow volatiles influence growth, development, and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol 92:359–370. https://doi.org/10.1007/s00253-011-3339-7

    Article  CAS  PubMed  Google Scholar 

  98. Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315:649–652. https://doi.org/10.1126/science.1135862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lopes da Rosa J, Bajaj V, Spoonamore J, Kaufman PD (2013) A small molecule inhibitor of fungal histone acetyltransferase Rtt109. Bioorg Med Chem Lett 23:2853–2859. https://doi.org/10.1016/j.bmcl.2013.03.112

    Article  CAS  PubMed  Google Scholar 

  100. Bauer I, Varadarajan D, Pidroni A, Gross S, Vergeiner S, Faber B, Hermann M, Tribus M, Brosch G, Graessle S (2016) A class 1 histone deacetylase with potential as an antifungal target. MBio 7. https://doi.org/10.1128/mBio.00831-16

  101. Graessle S, Dangl M, Haas H, Mair K, Trojer P, Brandtner E-M, Walton JD, Loidl P, Brosch G (2000) Characterization of two putative histone deacetylase genes from Aspergillus nidulans. Biochim Biophys Acta - Gene Struct Expr 1492:120–126. https://doi.org/10.1016/S0167-4781(00)00093-2

    Article  CAS  Google Scholar 

  102. Tribus M, Bauer I, Galehr J, Rieser G, Trojer P, Brosch G, Loidl P, Haas H, Graessle S (2010) A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus. Mol Biol Cell 21:345–353. https://doi.org/10.1091/mbc.e09-08-0750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kawauchi M, Iwashita K (2014) Functional analysis of histone deacetylase and its role in stress response, drug resistance and solid-state cultivation in Aspergillus oryzae. J Biosci Bioeng 118:172–176. https://doi.org/10.1016/j.jbiosc.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  104. Kawauchi M, Nishiura M, Iwashita K (2013) Fungus-specific Sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot Cell 12:1087–1096. https://doi.org/10.1128/EC.00003-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pidroni A, Faber B, Brosch G, Bauer I, Graessle S (2018) A class 1 histone deacetylase as major regulator of secondary metabolite production in Aspergillus nidulans. Front Microbiol 9:2212. https://doi.org/10.3389/fmicb.2018.02212

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tribus M, Galehr J, Trojer P, Brosch G, Loidl P, Marx F, Haas H, Graessle S (2005) HdaA, a major class 2 histone deacetylase of Aspergillus nidulans, affects growth under conditions of oxidative stress. Eukaryot Cell 4:1736–1745. https://doi.org/10.1128/EC.4.10.1736-1745.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee I, Oh J-H, Keats Shwab E, Dagenais TRT, Andes D, Keller NP (2009) HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 46:782–790. https://doi.org/10.1016/j.fgb.2009.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML, Varela-Rey M, Rotili D, Nebbioso A, Ropero S, Montoya G, Oyarzabal J, Velasco S, Serrano M, Witt M, Villar-Garea A, Inhof A, Mato JM, Esteller M, Fraga MF (2009) Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28:781–791. https://doi.org/10.1038/onc.2008.436

    Article  CAS  PubMed  Google Scholar 

  109. Itoh E, Odakura R, Oinuma K-I, Shimizu M, Masuo S, Takaya N (2017) Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. J Biol Chem 292:11043–11054. https://doi.org/10.1074/jbc.M116.753772

  110. Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell. https://doi.org/10.1128/EC.00186-07

  111. Uhrig RG, Schläpfer P, Mehta D, Hirsch-Hoffmann M, Gruissem W (2017) Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes. BMC Genomics 18:514. https://doi.org/10.1186/s12864-017-3894-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nie X, Li B, Wang S (2018) Epigenetic and posttranslational modifications in regulating the biology of Aspergillus species. Adv Appl Microbiol. https://doi.org/10.1016/bs.aambs.2018.05.004

  113. Menzies KJ, Zhang H, Katsyuba E, Auwerx J (2016) Protein acetylation in metabolism—metabolites and cofactors. Nat Rev Endocrinol 12:43–60. https://doi.org/10.1038/nrendo.2015.181

    Article  CAS  PubMed  Google Scholar 

  114. Lamoth F, Juvvadi PR, Steinbach WJ (2015) Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Front Microbiol 6:96. https://doi.org/10.3389/fmicb.2015.00096

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tsuju N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K (1976) A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 29:1–6. https://doi.org/10.7164/antibiotics.29.1

    Article  Google Scholar 

  116. Lamoth F, Juvvadi PR, Soderblom EJ, Moseley MA, Asfaw YG, Steinbach WJ (2014) Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 58:1889–1896. https://doi.org/10.1128/AAC.02286-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Robbins N, Leach MD, Cowen LE (2012) Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep 2:878–888. https://doi.org/10.1016/j.celrep.2012.08.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nguyen LN, Lopes LCL, Cordero RJB, Nosanchuk JD (2011) Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. J Antimicrob Chemother 66:2573–2580. https://doi.org/10.1093/jac/dkr358

    Article  CAS  PubMed  Google Scholar 

  119. Brandão FAS, Derengowski LS, Albuquerque P, Nicola AM, Silva-Pereira I, Poças-Fonseca MJ (2015) Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes. Virulence 6:618–630. https://doi.org/10.1080/21505594.2015.1038014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pfaller MA, Messer SA, Georgopapadakou N, Martell LA, Besterman JM, Diekema DJ (2009) Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 47:3797–3804. https://doi.org/10.1128/JCM.00618-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Avalos JL, Bever KM, Wolberger C (2005) Mechanism of sirtuin inhibition by nicotinamide: altering the NAD+ cosubstrate specificity of a Sir2 enzyme. Mol Cell 17:855–868. https://doi.org/10.1016/j.molcel.2005.02.022

    Article  CAS  PubMed  Google Scholar 

  122. Ciebiada-Adamiec A, Małafiej E, Ciebiada I (2010) Inhibitory effect of nicotinamide on enzymatic activity of selected fungal strains causing skin infection. Mycoses 53:204–207. https://doi.org/10.1111/j.1439-0507.2009.01696.x

    Article  CAS  PubMed  Google Scholar 

  123. Shigemoto R, Matsumoto T, Masuo S, Takaya N (2018) 5-Methylmellein is a novel inhibitor of fungal sirtuin and modulates fungal secondary metabolite production. J Gen Appl Microbiol 64:240–247. https://doi.org/10.2323/jgam.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  124. Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279:33716–33726. https://doi.org/10.1074/jbc.M402839200

  125. O’Meara TR, Hay C, Price MS, Giles S, Alspaugh JA (2010) Cryptococcus neoformans histone acetyltransferase Gcn5 regulates fungal adaptation to the host. Eukaryot Cell 9:1193–1202. https://doi.org/10.1128/EC.00098-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Muzaffar S, Bose C, Banerji A, Nair BG, Chattoo BB (2016) Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl Microbiol Biotechnol 100:323–335. https://doi.org/10.1007/s00253-015-6915-4

    Article  CAS  PubMed  Google Scholar 

  127. Sanglard D (2016) Emerging threats in antifungal-resistant fungal pathogens. Front Med 3:11. https://doi.org/10.3389/fmed.2016.00011

    Article  Google Scholar 

  128. Block TM, Rawat S, Brosgart CL, Francisco S (2017) HHS Public Access 6:69–81. https://doi.org/10.1016/j.antiviral.2015.06.014.Chronic

    Article  Google Scholar 

  129. Chandrasekar PH (2005) Antifungal resistance in Aspergillus. Med Mycol 43:295–298. https://doi.org/10.1080/13693780400029130

    Article  CAS  Google Scholar 

  130. Mukherjee P, Wang M (2009) Antifungal drug resistance. In: Antifungal Therapy, 1st edn. CRC press: Informa Healthcare, New York, pp 63–86

  131. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39. https://doi.org/10.1172/JCI69738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252. https://doi.org/10.1634/theoncologist.12-10-1247

    Article  CAS  PubMed  Google Scholar 

  133. Grant C, Rahman F, Piekarz R, Peer C, Frye R, Robey RW, Gardner ER, Figg WD, Bates SE (2010) Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev Anticancer Ther 10:997–1008. https://doi.org/10.1586/era.10.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sawas A, Radeski D, O’Connor OA (2015) Belinostat in patients with refractory or relapsed peripheral T-cell lymphoma: a perspective review. Ther Adv Hematol 6:202–208. https://doi.org/10.1177/2040620715592567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Moore D (2016) Panobinostat (farydak): a novel option for the treatment of relapsed or relapsed and refractory multiple myeloma. P & T 41:296–300

  136. Yoon S, Eom GH (2016) HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J 52:1–11. https://doi.org/10.4068/cmj.2016.52.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Li Y, Seto E (2016) HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 6:a026831. https://doi.org/10.1101/cshperspect.a026831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ning Z-Q, Li Z-B, Newman MJ, Shan S, Wang X-H, Pan D-S, Zhang J, Dong M, Du X, Lu X-P (2012) Chidamide (CS055/HBI-8000): a new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother Pharmacol 69:901–909. https://doi.org/10.1007/s00280-011-1766-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the São Paulo Research Foundation (FAPESP) for the grants and fellowships provided (2017/22669-0 to AD; 2018/09948-0 to NSM). The authors also acknowledge the National Council for Scientific and Technological Development (CNPq) for the financial support (404654/2018-5 and 304816/2017-5 to AD; 424729/2018-0 to NSM; 123313/2018-0 to ABL). The authors acknowledge the Espaço da Escrita – Pró-Reitoria de Pesquisa – UNICAMP – for the language services provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nilmar S. Moretti or André Damasio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Luis Henrique Souza Guimaraes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wassano, N.S., Leite, A.B., Reichert-Lima, F. et al. Lysine acetylation as drug target in fungi: an underexplored potential in Aspergillus spp.. Braz J Microbiol 51, 673–683 (2020). https://doi.org/10.1007/s42770-020-00253-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00253-w

Keywords

Navigation