Skip to main content

Advertisement

Log in

Tibouchina granulosa (Vell.) Cogn (Melastomataceae) as source of endophytic fungi: isolation, identification, and antiprotozoal activity of metabolites from Phyllosticta capitalensis

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Endophytes are microorganisms that form symbiotic relationships with their own host. Included in this group are the species Phyllosticta capitalensis, a group of fungi that include saprobes that produce bioactive metabolites. The present study aimed to identify the cultivable endophytic fungal microbiota present in healthy leaves of Tibouchina granulosa (Desr.) Cogn. (Melastomataceae) and investigate secondary metabolites produced by a strain of P. capitalensis and their effects against both Leishmania species and Trypanossoma cruzi. Identification of the strains was accomplished through multilocus sequencing analysis (MLSA), followed by phylogenetic analysis. The frequency of colonization was 73.66% and identified fungi belonged to the genus Diaporthe, Colletotrichum, Phyllosticta, Xylaria, Hypoxylon, Fusarium, Nigrospora, and Cercospora. A total of 18 compounds were identified by high-resolution mass spectrum analysis (UHPLC-HRMS), including fatty acids based on linoleic acid and derivatives, from P. capitalensis. Crude extracts had activity against Leishmania amazonensis, L. infantum, and Trypanosoma cruzi, with inhibitory concentration (IC50) values of 17.2 μg/mL, 82.0 μg/mL, and 50.13 μg/mL, respectively. This is the first report of the production of these compounds by the endophytic P. capitalensis isolated from T. granulosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brasil/Ministério Do Meio Ambiente (2011) Espécies nativas da flora brasileira de valor econômico atual ou potencial: Plantas para o futuro - Região Sul. http://www.mma.gov.br/estruturas/sbf2008_dcbio/_ebooks/regiao_sul/Regiao_Sul.

  2. Kuster RM, Arnold N, Wessjohann L (2009) Anti-fungal flavonoids from Tibouchina grandifolia. Biochem Syst Ecol 37:63–65. https://doi.org/10.1016/j.bse.2009.01.005

    Article  CAS  Google Scholar 

  3. Sobrinho AP, Minho AS, Ferreira LCL, Martins GR, Boylan F, Fernandes PD (2017) Characterization of anti-inflammatory effect and possible mechanism of action of Tibouchina granulosa. J Pharm Pharmacol 69:706–713. https://doi.org/10.1111/jphp.12712

    Article  CAS  PubMed  Google Scholar 

  4. Piza ACMT, Hokka CO, Sousa CP (2015) Endophytic Actinomycetes from Miconia albicans (Sw.) Triana (Melastomataceae) and evaluation of its antimicrobial activity. J Sci Res Rep 4:281–291. https://doi.org/10.9734/JSRR/2015/13237

    Article  Google Scholar 

  5. Souza AQL, Souza ADL, Astolfi-Filho S, Belém Pinheiro ML, Sarquis MIM, Pereira JO (2004) Antimicrobial activity of endophytic fungi isolated from amazonian toxic plants: Palicourea longiflora (aubl.) rich and Strychnos cogens bentham. Acta Amaz 34:185–195. https://doi.org/10.1590/S0044-59672004000200006

    Article  Google Scholar 

  6. Pires IMO, Silva AV, Santos MGS, Bezerra JDP, Barbosa RN, Silva DCV, Svedese VM, Souza-Motta CM, Paiva LM (2015) Antibacterial potential of endophytic fungi from cacti of the Caatinga, a tropical dry forest in northeastern Brazil. Gaia Scientia 9:155–161

    Google Scholar 

  7. Heath RN, Roux J, Slippers B, Drenth A, Pennycook SR, Wingfield BD, Wingfield MJ (2011) Occurrence and pathogenicity of Neofusicoccum parvum and N. mangiferae on ornamental Tibouchina species. For Pathol 41:48–51. https://doi.org/10.1111/j.1439-0329.2009.00635.x

    Article  Google Scholar 

  8. Pereira BA, Castro-Silva MA (2010) Endospore-forming rhizobacteria associated with Tibouchina urvilleana in areas affected by coal-mining waste. R Bras Ci Solo 34:563–567. https://doi.org/10.1590/S0100-06832010000200030

    Article  Google Scholar 

  9. Mazzoni-Viveiros SC, Trufem SFB (2004) Effects of air and soil pollution on the root system of the Tibouchina pulchra Cogn. (Melastomataceae): arbuscular mycorrhizal associations and morphology in Atlantic Forest area. Braz J Bot 27:337–348. https://doi.org/10.1590/S0100-84042004000200013

    Article  CAS  Google Scholar 

  10. Matias SR, Pagano MC, Muzzi FC, Oliveira CA, Carneiro AA, Horta SN, Scotti MR (2009) Effect of rhizobia, mycorrhizal fungi and phosphate-solubilizing microorganisms in the rhizosphere of native plants used to recover an iron ore area in Brazil. Eur J Soil Biol 45:259–266. https://doi.org/10.1016/j.ejsobi.2009.02.003

    Article  CAS  Google Scholar 

  11. Urcelay C, Tecco PA, Chiarini F (2005) Micorrizas arbusculares del tipo ‘Arum’ y ‘Paris’ y endófitos radicales septados oscuros en Miconia ioneura y Tibouchina paratropica (Melastomataceae). Bol Soc Argent Bot 40(3–4):151–155

    Google Scholar 

  12. Sales MA, Gonçalves JF, Dahora JS, Medeiros AO (2015) Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microb Ecol 69:84–94. https://doi.org/10.1007/s00248-014-0467-5

    Article  CAS  PubMed  Google Scholar 

  13. Van Der AAHA, Vanev S (2002) A revision of the species described in Phyllosticta. CBS, Utrecht, Netherlands

    Google Scholar 

  14. Glienke C, Pereira O, Stringari D, Fabris J, Kava-Cordeiro V, Galli-Terasawa L, Cunnington J, Shivas R, Groenewald J, Crous PW (2011) Endophytic and pathogenic Phyllosticta species, with reference to those associated with citrus black spot. Persoonia 26:47–56. https://doi.org/10.3767/003158511X569169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodrigues KF, Sieber TN, Gru¨nig CR, Holdenrieder O (2004) Characterization of Guignardia mangiferae isolated from tropical plants based on morphology, ISSR-PCR amplifications and ITS1-5.8S-ITS2. Mycol Res 108:45–52. https://doi.org/10.1017/S0953756203008840

    Article  CAS  PubMed  Google Scholar 

  16. Yan X, Sikora RA, Zheng J (2011) Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root−knot nematode Meloidogyne incognita. J Zhejiang Univ Sci B 12:219–225. https://doi.org/10.1631/jzus.B1000165

    Article  PubMed  PubMed Central  Google Scholar 

  17. Strobel G (2002) Rainforest endophytes and bioactive products. Crit Rev Biotechnol 22:315–333. https://doi.org/10.1080/07388550290789531

    Article  CAS  PubMed  Google Scholar 

  18. Evidente A, Cimmino A, Andolfi A, Vurro M, Zonno M, Motta A (2008) Phyllostoxin and phyllostin, bioactive metabolites produced by Phyllosticta cirsii, a potential mycoherbicide for Cirsium arvense biocontrol. J Agri Food Chem 56:884–888. https://doi.org/10.1021/jf0731301

    Article  CAS  Google Scholar 

  19. Wijeratne EMK, Paranagama PA, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2008) Sesquiterpene quinones and related metabolites from Phyllosticta spinarum, a fungal strain endophytic in Platycladus orientalis, of the sonoran desert. J Nat Prod 71:218–222. https://doi.org/10.1021/np070600c

    Article  CAS  PubMed  Google Scholar 

  20. Kumaran RS, Muthumary J, Hur BK (2008) Taxol from Phyllosticta citricarpa, a leaf spot fungus of the angiosperm Citrus medica. J Biosci Bioeng 106, 106:103. https://doi.org/10.1263/jbb.106.103

  21. Balde ES, Andolfi A, Bruye’re C, Cimmino A, Lamoral-Theys D, Vurro M, Van Damme M, Altomare C, Mathieu V, Kiss R, Evidente A (2010) Investigations of fungal secondary metabolites with potential anticancer activity. J Nat Prod 73:969–971. https://doi.org/10.1021/np900731p

    Article  CAS  PubMed  Google Scholar 

  22. Calve BL, Lallemand B, Perrone C, Lenglet G, Depauw C, Goietsenoven GV, Bury M, Vurro M, Herphelin F, Andolfi A, Zonno MC, Mathieu V, Dufrasne F, Antwerpen PV, Poumay Y, David-Cordonnier MH, Evidente A, Kiss R (2011) In vitro anticancer activity, toxicity and structure–activity relationships of phyllostictine a, a natural oxazatricycloalkenone produced by the fungus Phyllosticta cirsii. Toxicol Appl Pharmacol 254:8–17. https://doi.org/10.1016/j.taap.2011.03.027

    Article  CAS  PubMed  Google Scholar 

  23. Comstock JC, Martinson CA, Gengenbach BG (1973) Host specificity of a toxin from Phyllosticta maydis for Texas cytoplasmically male-sterile maize. Phytopathology 63:1357–1361

    Article  CAS  Google Scholar 

  24. Wikee S, Lombard L, Nakashima C, Motohashi K, Chukeatirote E, Cheewangkoon R, McKenzie EHC, Hyderous KD, Crous PW (2013) A phylogenetic re-evaluation of Phyllosticta (Botryosphaeriales). Stud Mycol 76:1–29. https://doi.org/10.3114/sim0019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. WHO (2017a) Chagas disease (American trypanosomiasis). http://www.who.int/chagas/en/ (accessed 08.11.2018)

  26. Hata K, Futai K (1995) Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, Thecodiplosis japonensis. Can J Bot 73:384–390. https://doi.org/10.1139/b95-040

    Article  Google Scholar 

  27. Castellani A (1967) Maintenance and cultivation of common pathogenic fungal in sterile distilled water for the researches. J Trop Med Hyg 70:181–184

    Google Scholar 

  28. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x

    Article  CAS  Google Scholar 

  29. Pamphile JA, Rocha CLMSC, Azevedo JL (2004) Co-transformation of a tropical maize endophytic isolate of Fusarium verticillioides (synonym F. moniliforme) with gusA and nia genes. Genet Mol Biol 27:253–258. https://doi.org/10.1590/S1415-47572004000200021

    Article  CAS  Google Scholar 

  30. Carbone I, Kohn L (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. https://doi.org/10.2307/3761358

    Article  CAS  Google Scholar 

  31. White TJ, Bruns T, Lee S, Taylor J (1999) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego pp, pp 315–322

    Google Scholar 

  32. Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298. https://doi.org/10.1093/bib/bbn013

    Article  CAS  PubMed  Google Scholar 

  33. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

    Article  PubMed  Google Scholar 

  34. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Uppsala University, Evolutionary Biology Centre

    Google Scholar 

  35. Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rambaut A (2009) FigTree v1. 3.1: tree figure drawing tool. Website: http://tree.bio.ed.ac.uk/software/figtree. Accessed 15 July 2015

  37. Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its natural geographic range. New Phytol 142:335–346. https://doi.org/10.1046/j.1469-8137.1999.00391.x

    Article  Google Scholar 

  38. Silva RL d O, Luz JS, Silveira EB, Cavalcante UMT (2006) Endophytic fungi of Annona spp.: isolation, enzymatic characterization of isolates and plant growth promotion in Annona squamosa L. seedlings. Acta Bot Bras 20:649–655. https://doi.org/10.1590/S0102-33062006000300015

    Article  Google Scholar 

  39. Peixoto Neto PAS, Azevedo JL, Caetano LC (2004) Microrganismos endofíticos em plantas: status atual e perspectivas. B Latinoam Caribe Pl 3:69–72

    Google Scholar 

  40. Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  41. Rhoden SA, Garcia A, Rubin-Filho CJ, Azevedo JL, Pamphile JA (2012) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11:2513–2522. https://doi.org/10.4238/2012.June.15.8

    Article  CAS  PubMed  Google Scholar 

  42. Silva-Hughes AF, Wedge DE, Cantreel Carvalho CR, Pan Z, Moraes MRR, Madoxx CL, Rosa LH (2015) Diversity and antifungal activity of the endophytic fungi associated with the native medicinal cactus Opuntia humifusa (Cactaceae) from the United States. Microbiol Res 175:67–77. https://doi.org/10.1016/j.micres.2015.03.007

    Article  PubMed  Google Scholar 

  43. Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald J, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31:1–4. https://doi.org/10.3767/003158513X666844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Murali TS, Suryanarayanan TS, Geeta R (2006) Endophytic Phomopsis species: host range and implications for diversity estimates. Can J Microbiol 52:673–680. https://doi.org/10.1139/w06-020

    Article  CAS  PubMed  Google Scholar 

  45. Bottela L, Diez JJ (2011) Phylogenic diversity of fungal endophytes in Spanish stands of Pinus halepensis. Fungal Divers 47:9–18. https://doi.org/10.1007/s13225-010-0061-1

    Article  Google Scholar 

  46. Suryanarayanan TS, Murali TS, Venkatesan G (2002) Occurrence and distribution of fungal endophytes in tropical forests across a rainfall gradient. Can J Bot 80:818–826. https://doi.org/10.1139/b02-069

    Article  Google Scholar 

  47. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  PubMed Central  Google Scholar 

  48. Farr DF, Rossman AY (2013) Fungal databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA http://ntars-gringov/fungaldatabases/ Acessed 30 November 2017

  49. Auyong FR, Taylor PWJ (2012) Genetic transformation of Colletotrichum truncatum associated with anthracnose disease of chili by random insertional mutagenesis. J Basic Microbiol 52:372–382. https://doi.org/10.1002/jobm.201100250

    Article  CAS  PubMed  Google Scholar 

  50. Barimani M, Pethybridge SJ, Vaghefi N, Hay FS, Taylor PWJ (2013) A new anthracnose disease of pyrethrum caused by Colletotrichum tanaceti sp. nov. Plant Pathol 62:1248–1257. https://doi.org/10.1111/ppa.12054

    Article  CAS  Google Scholar 

  51. Chomnunti P, Schoch CL, Aguirre-Hudson B, Ko-Ko TW, Hongsanan S, Jones EBG, Kodsueb R, Phookamsak R, Chukeatirote E, Bahkali AH, Hyde KD (2011) Capnodiaceae. Fungal Divers 51:103–134. https://doi.org/10.1007/s13225-011-0145-6

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bissett J (1986) Discochora yuccae sp. nov. with Phyllosticta and Leptodothiorella synanamorphs. Can J Bot 64:1720–1726

    Article  Google Scholar 

  53. Van der Aa HA (1973) Studies in Phyllosticta I. Stud Mycol 5:1–110

    Google Scholar 

  54. Okane I, Lumyong S, Nakagiri A, Ito T (2003) Extensive host range of an endophytic fungus, Guignardia endophyllicola (anamorph: Phyllosticta capitalensis). Mycoscience 44:353–336. https://doi.org/10.1007/s10267-003-0128-x

    Article  Google Scholar 

  55. Wulandari NF, Bhat DJ, To-anun C (2014) Redisposition of species from the Guinardia sexual state of Phyllosticta. Plant Pathol Quar 4:45–85. https://doi.org/10.5943/ppq/4/1/6

    Article  Google Scholar 

  56. Santos MS, Orlandelli RC, Polonio JC, Ribeiro MA d S, Sarragioto MH, Azevedo JL, Pamphile JA (2017) Endophytes isolated from passion fruit plants: molecular identification, chemical characterization and antibacterial activity of secondary metabolites. J Appl Pharm Sci 7:38–43. https://doi.org/10.7324/JAPS.2017.70405

    Article  CAS  Google Scholar 

  57. Entwistle ID, Howard CC, Johnstone RA (1974) Isolation of brefeldin a from Phyllosticta medicaginis. Phytochem 13:173–174. https://doi.org/10.1016/S0031-9422(00)91288-3

    Article  CAS  Google Scholar 

  58. Calhoun LA, Findlay JA, Miller J, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96:281–286. https://doi.org/10.1016/S0953-7562(09)80939-8

    Article  Google Scholar 

  59. Sun Z-H, Liang F-L, Wu W, Chen Y-C, Pan Q-L, Li H-H, Ye W, Liu H-X, Li S-N, Tan G-H, Zhang W-M (2015) Guignardones P–S, new meroterpenoids from the endophytic fungus Guignardia mangiferae A348 derived from the medicinal plant Smilax glabra. Molecules 20:22900–22907. https://doi.org/10.3390/molecules201219890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Madala NE, Piater LA, Steenkamp PA, Dubery IA (2014) Multivariate statistical models of metabolomic data reveals different metabolite distribution patterns in isonitrosoacetophenone-elicited Nicotiana tabacum and Sorghum bicolor cells. SpringerPlus. 3:254. https://doi.org/10.1186/2193-1801-3-254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eriksson L, Johansson E, Kettaneh-Wold N, Wikström C, Wold S (2008) Design of experiments: principles and applications-Umetrics. Umeå, Sweden

    Google Scholar 

  62. Vakkuri O, Tervo J, Luttinen R, Ruotsalainen H, Rahkamaa E, Leppaluoto J (1987) A cyclic isomer of 2-hydroxymelatonin: a novel metabolite of melatonin. Endocrinology 120:2453–2459. https://doi.org/10.1210/endo-120-6-2453

    Article  CAS  PubMed  Google Scholar 

  63. Takagi H, Ishiga Y, Watanabe S, Konishi T, Egusa M, Akiyoshi N, Matsuura T, Mori IC, Hirayama T, Kaminaka H, Shimada H, Sakamoto A (2016) Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. J Exp Bot 67:2519–2532. https://doi.org/10.1093/jxb/erw071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jia M-Q, Xiong Y-J, Xue Y, Wang Y, Yan C (2017) Using UPLC-MS/MS for characterization of active components in extracts of Yupingfeng and application to a comparative pharmacokinetic study in rat plasma after oral administration. Molecules 22:810–827. https://doi.org/10.3390/molecules22050810

    Article  CAS  PubMed Central  Google Scholar 

  65. Tawfike AF, Abbott G, Young L, Edrada-Ebel R (2018) Metabolomic-guided isolation of bioactive natural products from Curvularia sp., an endophytic fungus of Terminalia laxiflora. Planta Med 84(3):182–190. https://doi.org/10.1055/s-0043-118807

    Article  CAS  PubMed  Google Scholar 

  66. Tudela R, Ribas-Agustí A, Buxaderas S, Riu-Aumatell M, Castellari M, López-Tamames E (2016) Ultrahigh-performance liquid chromatography (UHPLC)-tandem mass spectrometry (MS/MS) quantification of nine target indoles in sparkling wines. J Agric Food Chem 64:4772–4776. https://doi.org/10.1021/acs.jafc.6b01254

    Article  CAS  PubMed  Google Scholar 

  67. Ponti J, Colognato R, Franchini F, Gioria S, Simonelli F, Abbas K, Rossi F (2008) Uptake and cytotoxicity of gold nanoparticles in MDCK and HepG2 cell lines. Available: ttp://www.aistriss.jp/projects/nedonanorisk/nanorisk_symposium2008/pdf/03 _122_en_ROSSI.pdf

  68. Almeida TT, Ribeiro MAS, Polonio JC, Garcia FP, Nakamura CV, Meurer EC, Sarragiotto MH, Baldoqui DC, Azevedo JL, Pamphile JA (2017) Curvulin and spirostaphylotrichins r and u from extracts produced by two endophytic Bipolaris sp. associated to aquatic macrophytes with antileishmanial activity. Nat Prod Res:1–8. https://doi.org/10.1080/14786419.2017.1380011

  69. Carvalho CR, Gonçalves VN, Pereira CB, Johann S, Galliza IV, Alves TMA, Rabelo A, Sobral EG, Zani LC, Rosa CA, Rosa LH (2012) The diversity, antimicrobial and anticancer activity of endophytic fungi associated with the medicinal plant Stryphnodendron adstringens (Mart.) Coville (Fabaceae) from the Brazilian savannah. Symbiosis 57:95–107. https://doi.org/10.1007/s13199-012-0182-2

    Article  Google Scholar 

  70. Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PloS One 8. https://doi.org/10.1371/journal.pone.0073192

  71. Smith PMC, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802. https://doi.org/10.1104/pp.010912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tewari N, Ramesh N, Mishra RC, Tripathi RP, Srivastava VML, Gupta S (2004) Leishmanicidal activity of phenylene bridged C2 symmetric glycosyl ureides. Bioorg Med Chem Lett 14:4055–4059. https://doi.org/10.1016/j.bmcl.2004.05.035

    Article  CAS  PubMed  Google Scholar 

  73. Boudet AM (2007) Evolution and current status of research in phenolic compounds. Phytochem 68(22–24):2722–2735. https://doi.org/10.1016/j.phytochem.2007.06.012

    Article  CAS  Google Scholar 

  74. Brenzan MA, Nakamura CV, Prado Dias Filho B, Ueda-Nakamura T (2007) Antileishmanial activity of crude extract and coumarin from Calophyllum brasiliense leaves against Leishmania amazonensis. Parasitol Res 101:715–722. https://doi.org/10.1007/s00436-007-0542-7

    Article  PubMed  Google Scholar 

  75. Kanakaraju A, Rao YS, Prasad C (2016) Review on selected antitubercular drug targeted proteins for strucuture based drug discovery and development. World J Pharm Pharm Sci 5:231–236. https://doi.org/10.20959/wjpps201610-7667

    Article  CAS  Google Scholar 

  76. Stout KL, Hallock KJ, Kampf JW, Ramamoorthy A (2000) N-acetyl-l-phenylalanine. Acta Crystallogr C 56:E100. https://doi.org/10.1107/S0108270100001712

    Article  CAS  PubMed  Google Scholar 

  77. Horrobin DF (1983) The role of essential fatty acids and prostaglandins in the premenstrual syndrome. J Reprod Med 28:465–468

    CAS  PubMed  Google Scholar 

  78. Gubbala LP, Arutla S, Venkateshwarlu V (2016) Preparation and characterization of metaxalone nanoparticles prepared by high pressure homogenization. Am J Pharmtech Res 6

  79. Guimarães DO, Borges WS, Kawano CY, Ribeiro PH, Goldman GH, Nomizo A, Thiemann OH, Oliva G, Lopes NP, Pupo MT (2008) Biological activities from extracts of endophytic fungi isolated from Viguiera arenaria and Tithonia diversifolia. FEMS Immunol Med Microbiol 52:134–144. https://doi.org/10.1111/j.1574-695X.2007.00354.x

    Article  CAS  PubMed  Google Scholar 

  80. Hamilton CJ, Saravanamuthu A, Eggleston IM, Fairlamb AH (2003) Ellman’s-reagent-mediated regeneration of trypanothione in situ: substrate economical microplate and time-dependent inhibition assays for trypanothione reductase. Biochem J 369:529–537. https://doi.org/10.1042/BJ20021298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cabot MC, Goucher CR (1981) Chaulmoogric acid-assimilation into the complex lipids of mycobacteria. Lipids 16:146–148

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for scholarships (Finance code 001) and to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (307603/2017-2) and the SETI/UGF (TC n.65/2018) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alencar Pamphile.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Luis Henrique Souza Guimaraes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1177 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golias, H.C., Polonio, J.C., dos Santos Ribeiro, M.A. et al. Tibouchina granulosa (Vell.) Cogn (Melastomataceae) as source of endophytic fungi: isolation, identification, and antiprotozoal activity of metabolites from Phyllosticta capitalensis. Braz J Microbiol 51, 557–569 (2020). https://doi.org/10.1007/s42770-019-00221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00221-z

Keywords

Navigation