Skip to main content
Log in

Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The genus Bradyrhizobium harbors many endosymbionts of legumes, but recent research has shown their widespread presence in soils and in non-legumes, notably in roots of sugarcane. This study aimed to investigate the Bradyrhizobium sp. community density in the endosphere and the rhizosphere of two commercial sugarcane cultivars. Samples of the rhizosphere and root endosphere of two Brazilian sugarcane cultivars (RB867515 and IACSP95-5000) were collected, serially diluted, and inoculated on axenic cowpea (Vigna unguiculata) and the induction of nodules was evaluated. Based on the results, a density was estimated of at least 1.6 × 104 rhizobia g root−1 in rhizosphere samples and up to 105 rhizobia g root −1 in endosphere. BOX-PCR profiling of 93 Bradyrhizobium isolates revealed genetic variability, with some dominant (up to 18 representants) and less dominant genotypes. 16S rRNA and ITS sequence analyses confirmed nine phylotypes, six of which pertained to the B. elkanii clade and three to the B. japonicum clade. Five isolates were genetically similar to the recently described species B. sacchari. There was no effect of the factors “plant cultivar” and “root compartment” on Bradyrhizobium sp. community composition and the most abundant genotypes occurred both in rhizosphere and endosphere of both cultivars. Therefore, this study confirms the natural presence of diverse Bradyrhizobium spp. in sugarcane root systems (mainly the rhizosphere) and indicates that certain Bradyrhizobium phylotypes have a special affinity for sugarcane root colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: from saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303

    Article  CAS  PubMed  Google Scholar 

  2. Yanni YG, Rizk RY, Corich V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Bruijn F, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  3. Chaintreuil C, Giraud E, Prin Y, Lorquin J, Ba A, Gillis M, de Lajudie P, Dreyfus B (2000) Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Appl Environ Microbiol 66:5437–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burbano CS, Liu Y, Rösner KL, Reis VM, Caballero-Mellado J, Reinhold-Hurek B, Hurek T (2011) Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environ Microbiol Rep 3:383–389

    Article  CAS  PubMed  Google Scholar 

  5. Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449

    Article  CAS  Google Scholar 

  6. Fischer D, Pfitzner B, Schmid M, Simões-Araújo JL, Reis VM, Pereira W, Ormeño-Orrillo E, Hai B, Hofmann A, Schloter M, Martinez-Romero E, Baldani JI, Hartmann A (2012) Molecular characterisation of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant Soil 356:83–99

    Article  CAS  Google Scholar 

  7. de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, González-Guerrero M, de Araújo LM, Verza NC, Bagheri HC, Imperial J, Arruda P (2016) Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep 6:28774. https://doi.org/10.1038/srep28774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong M, Yang Z, Cheng G, Peng L, Xu Q, Xu J (2018) Diversity of the bacterial microbiome in the roots of four Saccharum species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Front Microbiol 9(267). https://doi.org/10.3389/fmicb.2018.00267

  9. Yeoh YK, Paungfoo-Lonhienne C, Dennis PG, Robinson N, Ragan MA, Schmidt S, Hugenholtz P (2016) The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environ Microbiol 18:1338–1351

    Article  PubMed  Google Scholar 

  10. Rouws LFM, Leite J, Matos GF et al (2014) Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environ Microbiol Rep 6:354–363

    Article  CAS  PubMed  Google Scholar 

  11. Matos GF, Zilli JE, de Araújo JLS et al (2017) Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots. Arch Microbiol 199:1251–1258

    Article  CAS  PubMed  Google Scholar 

  12. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  13. Bulgarelli D, Rott M, Schlaeppi K, ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 488:91–95

    Article  CAS  PubMed  Google Scholar 

  14. Braga Junior RLC, Landell MGA, Silva DN et al (2017) Censo varietal IAC de cana-de-açúcar na região Centro-Sul do Brasil – Safra 2016/17. Instituto Agronômico de Campinas. Boletim Técnico 217

  15. Barillot CDC, Sarde CO, Bert V, Tarnaud E, Cochet N (2013) A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Ann Microbiol 63:471–476. https://doi.org/10.1007/s13213-012-0491-y

    Article  CAS  Google Scholar 

  16. Vincent JM (1970) A manual for the practical study of root-nodule bacteria, Oxford, [Published for the] International Biological Programme [by] Blackwell Scientific; International Biological Programme

  17. Norris DO, Date RA (1976) Legume bacteriology. In: Sham NH, Bryan WW (eds) Tropical pasture research: principles and methods. Hurley: Commonwealth Bureau of Pastures and Field Crops, Bulletin, 51, Costa Mesa, pp 134–174

    Google Scholar 

  18. Leite J, Passos SR, Simões-Araújo JL, Rumjanek NG, Xavier GR, Zilli JE (2018) Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Braz J Microbiol 49:703–713. https://doi.org/10.1016/j.bjm.2017.01.007

    Article  CAS  PubMed  Google Scholar 

  19. Woomer PL (1994) Most probable number counts: tropical soil biology and fertility programme, Nairobi, Kenya. In: Weaver RW (ed) Methods of soil analysis, part 2, microbiological and biochemical properties. Soil Sciense Society of America, Inc., Wisconsin, pp 59–79

    Google Scholar 

  20. McCrady MH (1915) The numerical interpretation of fermentation-tube results. J Infect Dis 17:183–212

    Article  Google Scholar 

  21. Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418

    Article  CAS  PubMed  Google Scholar 

  22. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  27. Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B et al (2008) Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. Appl Environ Microbiol 74:6987–6996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woomer P, Bennett J, Yost R (1990) Overcoming the inflexibility of most-probable-number procedures. Agron J 82:349–353

    Article  Google Scholar 

  29. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  31. Torres D, Revale S, Obando M, Maroniche G, Paris G, Perticari A, Vazquez M, Wisniewski-Dyé F, Martínez-Abarca F, Cassán F (2015) Genome sequence of Bradyrhizobium japonicum E109, one of the most agronomically used nitrogen-fixing rhizobacteria in Argentina. Genome Announc 3:e01566–e01514. https://doi.org/10.1128/genomeA.01566-14

    Article  PubMed  PubMed Central  Google Scholar 

  32. Willems A, Munive A, de Lajudie P, Gillis M (2003) In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 26:203–210

    Article  CAS  PubMed  Google Scholar 

  33. Reis VM, Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:401–405

    Article  CAS  PubMed  Google Scholar 

  34. Oliveira ALM, Canuto EL, Silva EE, Reis VM, Baldani JI (2004) Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Braz J Microbiol 35:295–299

    Article  Google Scholar 

  35. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Brazilian Agricultural Research Corporation (Embrapa, project 0216050170002003) and by the Brazilian National Research Council (CNPq, processes 420746/2016-1 and 308898/2017-6). The first author received a post-graduate grant from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Felicianus Marie Rouws.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ieda Carvalho Mendes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

16S rRNA-based phylogenetic relationships among selected isolates from rhizosphere and endosphere samples of sugarcane cultivars RB867515 and IACSP95-5000 and Bradyrhizobium type strains. a) detailed view of the B. elkanii and b) detailed view of the B. japonicum clade. The phylogeny is based on 1197 nucleotide positions. Evolutionary history was inferred using the maximum likelihood method, with 500 replications based on the Tamura 3-parameter model. [35] Numbers next to branches represent the percentage of trees in which the shown topology occurred. Genbank accession numbers are given between parentheses. (PDF 321 KB)

Table S1

- Sequential numbers attributed to cowpea plants inoculated with sugarcane root endosphere and rhizosphere samples from sugarcane cultivars RB867515 and IACSP95–5000 obtained from a field experiment with three experimental blocks (replicates). (DOCX 19.6 kb)

Table S2

– Number of bacterial isolates obtained from cowpea nodules after inoculation with different dilution levels of endosphere and rhizosphere samples from sugarcane cultivars RB867515 and IACSP95–5000. (DOCX 15.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Alencar Menezes Júnior, I., Feitosa de Matos, G., Moura de Freitas, K. et al. Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars. Braz J Microbiol 50, 759–767 (2019). https://doi.org/10.1007/s42770-019-00090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00090-6

Keywords

Navigation