Skip to main content

Advertisement

Log in

Versatile Recyclable Kevlar Nanofibrous Aerogels Enabled by Destabilizing Dynamic Balance Strategy

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Aerogels are of great interest in diverse fields including thermal insulation, environmental protection, liquid separation, electromagnetic shielding, etc. However, the development of renewable and recyclable aerogels, especially synthetic polymer-based ones, remains an enormous challenge, which seriously hinders the practical application of aerogels. Herein, utilizing Kevlar nanofibers (KNFs) as representative synthetic polymer building blocks, a destabilizing dynamic balance (DDB) strategy is proposed to fabricate recyclable aerogels with high reprocessing consistency. More specifically, aprotic esters (e.g., di-tert-butyl decarbonate, DiBoc) and alkalis (e.g., potassium tert-butoxide, t-BuOK) are introduced to trigger the destabilizing dynamic balance between deprotonation–protonation of KNFs, resulting in a reversible sol–gel transition. Meanwhile, the duration of sol–gel transition (i.e., gelation) time, adjustable from 10–2 to 103 min, is compatible with versatile processing methods, such as static mould casting, dynamic wet spinning, dynamic blade coating and dynamic 3D printing. These unique advantages enable the fabrication of various KNF aerogel products (i.e., continuous fibers, continuous films, large-sized monoliths and 3D-printed articles) with low density (33–165 mg/cm3), high compressive modulus (up to 52 MPa), high specific surface area (360–404 m2/g) and low thermal conductivity (0.027–0.050 W/m·K). Notably, these properties are comparable or superior to that of previously reported KNF aerogels and far superior to that of recyclable aerogels. Compared with direct fabrication from raw materials, the DDB strategy reduces the cost by 50.5% and 82.5% when products are made from recycled aerogels and wet gels, respectively. Such cost reduction further increases with the number of recycling cycles, which is calculated as $275 per kilogram KNF aerogel with 5 cycles. This work develops extraordinary KNF aerogels those can be recycled and reused, as well as provides a strategy that can be applied to design more recyclable aerogels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data and materials are available.

References

  1. Pierre AC, Pajonk GM. Chemistry of aerogels and their applications. Chem Rev. 2002;102:4243.

    Article  CAS  Google Scholar 

  2. Wang Q, Mahadik DB, Meti P, Gong YD, Lee KY, Park HH. Dioxybenzene-bridged hydrophobic silica aerogels with enhanced textural and mechanical properties. Microporous Mesoporous Mater. 2020;294: 109863.

    Article  CAS  Google Scholar 

  3. Yu ZL, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma ZY, Xing WY, Qiao C, Bergstrom L, Antonietti M, Yu SH. Fire-retardant and thermally insulating phenolic-silica aerogels. Angew Chem Int Ed. 2018;57:4538.

    Article  CAS  Google Scholar 

  4. Si Y, Fu Q, Wang X, Zhu J, Yu J, Sun G, Ding B. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions. ACS Nano. 2015;9:3791.

    Article  CAS  Google Scholar 

  5. Zhu C, Liu T, Qian F, Han TY, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016;16:3448.

    Article  CAS  Google Scholar 

  6. Geng Y, Sarkis J, Bleischwitz R. How to globalize the circular economy. Nature. 2019;565:153.

    Article  CAS  Google Scholar 

  7. Thomas KV. Understanding the plastics cycle to minimize exposure. Nat Sustain. 2022;5:282.

    Article  Google Scholar 

  8. Yang J, Yi L, Fang X, Song Y, Zhao L, Wu J, Wu H. Self-healing and recyclable biomass aerogel formed by electrostatic interaction. Chem Eng J. 2019;371:213.

    Article  CAS  Google Scholar 

  9. Ren W, Gao J, Lei C, Xie Y, Cai Y, Ni Q, Yao J. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem Eng J. 2018;349:766.

    Article  CAS  Google Scholar 

  10. Chen J, Li H, Ma L, Jiang G, Li D, Wu Y, Shi X, Wang X, Deng H. Chitosan-based recyclable composite aerogels for the photocatalytic degradation of rhodamine B. Carbohydr Polym. 2021;273: 118559.

    Article  CAS  Google Scholar 

  11. Zhang X, Zhao J, Liu K, Li G, Zhao D, Zhao Z, Wan J, Yang X, Bai R, Wang Y. Weldable and closed-loop recyclable monolithic dynamic covalent polymer aerogels. Natl Sci Rev. 2021;2021:nwac012.

    Google Scholar 

  12. Yang B, Wang L, Zhang MY, Luo JJ, Lu ZQ, Ding XY. Fabrication, applications, and prospects of aramid nanofiber. Adv Funct Mater. 2020;30:2000186.

    Article  CAS  Google Scholar 

  13. Nie CX, Yang Y, Peng ZH, Cheng C, Ma L, Zhao CS. Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. J Membr Sci. 2017;528:251.

    Article  CAS  Google Scholar 

  14. Yang B, Wang L, Zhang M, Luo J, Ding X. Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano. 2019;13:7886.

    Article  CAS  Google Scholar 

  15. Yang M, Cao K, Sui L, Qi Y, Zhu J, Waas A, Arruda EM, Kieffer J, Thouless MD, Kotov NA. Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano. 2011;5:6945.

    Article  CAS  Google Scholar 

  16. Li JL, Tian WT, Yan HC, He LY, Tuo XL. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery. J Appl Polym Sci. 2016;133:43623.

    Article  Google Scholar 

  17. Xu L, Zhao X, Xu C, Kotov NA. Biomimetic nanocomposites: water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv Mater. 2018;30:1870007.

    Article  Google Scholar 

  18. Zhu J, Yang M, Emre A, Bahng JH, Xu L, Yeom J, Yeom B, Kim Y, Johnson K, Green P, Kotov NA. Branched aramid nanofibers. Angew Chem Int Ed Engl. 2017;56:11744.

    Article  CAS  Google Scholar 

  19. Tung SO, Fisher SL, Kotov NA, Thompson LT. Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. Nat Commun. 2018;9:1.

    Article  Google Scholar 

  20. Hu SY, Lin SD, Tu YY, Hu JW, Wu Y, Liu GJ, Li F, Yu FM, Jiang TT. Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries. J Mater Chem A. 2016;4:3513.

    Article  CAS  Google Scholar 

  21. Tian WT, Qiu T, Shi YF, He LY, Tuo XL. The facile preparation of aramid insulation paper from the bottom-up nanofiber synthesis. Mater Lett. 2017;202:158.

    Article  CAS  Google Scholar 

  22. Li Y, Yuan SS, Zhou C, Zhao Y, Van der Bruggen B. A high flux organic solvent nanofiltration membrane from Kevlar aramid nanofibers with in situ incorporation of microspheres. J Mater Chem A. 2018;6:22987.

    Article  CAS  Google Scholar 

  23. Fan J, Shi Z, Zhang L, Wang J, Yin J. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement. Nanoscale. 2012;4:7046.

    Article  CAS  Google Scholar 

  24. Xie CJ, Guo ZX, Qiu T, Tuo XL. Construction of aramid engineering materials via polymerization-induced para-aramid nanofiber hydrogel. Adv Mater. 2021;33:2101280.

    Article  CAS  Google Scholar 

  25. Yang Y, Lyu J, Chen J, Liao J, Zhang X. Flame-retardant host–guest films for efficient thermal management of cryogenic devices. Adv Funct Mater. 2021;31:2102232.

    Article  CAS  Google Scholar 

  26. Sheng Z, Ding Y, Li G, Fu C, Hou Y, Lyu J, Zhang K, Zhang X. Solid–liquid host–guest composites: the marriage of porous solids and functional liquids. Adv Mater. 2021;33:2104851.

    Article  CAS  Google Scholar 

  27. Xie C, He L, Shi Y, Guo ZX, Qiu T, Tuo X. From monomers to a lasagna-like aerogel monolith: an assembling strategy for aramid nanofibers. ACS Nano. 2019;13:7811.

    Article  CAS  Google Scholar 

  28. Lyu J, Sheng ZZ, Xu YY, Liu CM, Zhang XT. Nanoporous Kevlar aerogel confined phase change fluids enable super-flexible thermal diodes. Adv Funct Mater. 2022;32:2200137.

    Article  Google Scholar 

  29. Hu P, Lyu J, Fu C, Gong WB, Liao J, Lu W, Chen Y, Zhang X. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano. 2020;14:688.

    Article  CAS  Google Scholar 

  30. Cheng Q, Sheng Z, Wang Y, Lyu J, Zhang X. General suspended printing strategy toward programmatically spatial Kevlar aerogels. ACS Nano. 2022;16:4905.

    Article  CAS  Google Scholar 

  31. Cheng QQ, Liu Y, Lyu J, Lu Q, Zhang XT, Song WH. 3D printing-directed auxetic Kevlar aerogel architectures with multiple functionalization options. J Mater Chem A. 2020;8:14243.

    Article  CAS  Google Scholar 

  32. Bao Y, Lyu J, Liu Z, Ding Y, Zhang X. Bending stiffness-directed fabricating of Kevlar aerogel-confined organic phase-change fibers. ACS Nano. 2021;15:15180.

    Article  CAS  Google Scholar 

  33. Lyu J, Liu Z, Wu X, Li G, Fang D, Zhang X. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano. 2019;13:2236.

    Google Scholar 

  34. Liu Z, Lyu J, Fang D, Zhang X. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano. 2019;13:5703.

    Article  CAS  Google Scholar 

  35. Lyu J, Wang X, Liu L, Kim Y, Tanyi EK, Chi H, Feng W, Xu L, Li T, Noginov MA, Uher C, Hammig MD, Kotov NA. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers. Adv Funct Mater. 2016;26:8435.

    Article  CAS  Google Scholar 

  36. Hu Y, Yang G, Zhou J, Li H, Shi L, Xu X, Cheng B, Zhuang X. Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano. 2022;16:5984.

    Article  CAS  Google Scholar 

  37. Xie C, Liu S, Zhang Q, Ma H, Yang S, Guo Z-X, Qiu T, Tuo X. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing–drying method. ACS Nano. 2021;15:10000.

    Article  CAS  Google Scholar 

  38. Andersen JM, Mack J. Decoupling the Arrhenius equation via mechanochemistry. Chem Sci. 2017;8:5447.

    Article  CAS  Google Scholar 

  39. Williams JC, Nguyen BN, McCorkle L, Scheiman D, Griffin JS, Steiner SA III, Meador MAB. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity. ACS Appl Mater Interfaces. 1801;2017:9.

    Google Scholar 

  40. Williams JC, Meador MAB, McCorkle L, Mueller C, Wilmoth N. Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides. Chem Mater. 2014;26:4163.

    Article  CAS  Google Scholar 

  41. Huang T, Zhu Y, Zhu J, Yu H, Zhang Q, Zhu M. Self-reinforcement of light, temperature-resistant silica nanofibrous aerogels with tunable mechanical properties. Adv Fiber Mater. 2020;2:338.

    Article  CAS  Google Scholar 

  42. Li M, Chen X, Li X, Dong J, Zhao X, Zhang Q. Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv Fiber Mater. 2022;4:1267.

    Article  CAS  Google Scholar 

  43. Xue T, Zhu C, Feng X, Wali Q, Fan W, Liu T. Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv Fiber Mater. 2022;4:1118.

    Article  CAS  Google Scholar 

  44. Yang S, Xu Z, Zhang T, Zhao Y. Emulsion-templated, hydrophilic-oleophobic aerogels with flexibility, stretchability and recyclability. Polymer. 2022;250: 124886.

    Article  CAS  Google Scholar 

  45. Huang Z, Zhang H, Guo M, Zhao M, Liu Y, Zhang D, Terrones M, Wang Y. Large-scale preparation of electrically conducting cellulose nanofiber/carbon nanotube aerogels: Ambient-dried, recyclable, and 3D-Printable. Carbon. 2022;194:23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support from the Royal Society Newton Advanced Fellowship (NA170184). We are also grateful for the support from the National Natural Science Foundation of China (52003290, 52173052, 52203021) and the Natural Science Foundation of Jiangsu Province (BK20220296).

Author information

Authors and Affiliations

Authors

Contributions

XZ and LL conceived the idea and designed the experiments. XZ supervised the project. LL conducted the experiments with the assistance of QC, CF. The data were analysed and processed by XZ, LL and JL, LL prepared the manuscript and XZ, JL contributed to the revision.

Corresponding author

Correspondence to Xuetong Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13278 KB)

Supplementary file2 (MP4 1630 KB)

Supplementary file3 (MP4 620 KB)

Supplementary file4 (MP4 334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lyu, J., Cheng, Q. et al. Versatile Recyclable Kevlar Nanofibrous Aerogels Enabled by Destabilizing Dynamic Balance Strategy. Adv. Fiber Mater. 5, 1050–1062 (2023). https://doi.org/10.1007/s42765-023-00273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00273-9

Keywords

Navigation