Skip to main content
Log in

Temperature-Regulating Phase Change Fiber Scaffold Toward Mild Photothermal–Chemotherapy

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Photothermal therapy (PTT) is a treatment that increases the temperature of tumors to 42–48 °C, or even higher for tumor ablation. PTT has sparked a lot of attention due to its ability to induce apoptosis or increase sensitivity to chemotherapy. Excessive heat not only kills the tumor cells, but also damages the surrounding healthy tissue, reducing therapeutic accuracy and increasing the possible side effects. Herein, a phase change fiber (PCF) scaffold serving as a thermal trigger in mild photothermal–chemo tumor therapy is developed to regulate temperature and control drug release. These prepared PCFs, comprised of hollow carbon fibers (HCFs) loaded with lauric acid as a phase change material (PCM), can effectively store and release any excess heat generated by irradiating with a near-infrared (NIR) laser through the reversible solid–liquid transition process of the PCM. With this feature, the optimal PTT temperature of implanted PCF-based composite scaffolds was identified for tumor therapy with minimal normal tissue damage. In addition, controlled release of chemotherapeutic drugs and heat shock protein (HSP) inhibitors from the PCF-based composite scaffolds have been shown to improve the efficacy of mild PTT. The developed PCF-based scaffold sheds light on the development of a new generation of therapeutic scaffolds for thermal therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 2021;71:209.

    Article  Google Scholar 

  2. Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015;9:6.

    Article  CAS  Google Scholar 

  3. Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem 2019;7:167.

    Article  CAS  Google Scholar 

  4. Chen L, Yu QQ, Cheng K, Topham PD, Xu MM, Sun XQ, Pan YM, Jia YF, Wang S, Wang LG. Can photothermal post-operative cancer treatment be induced by a thermal trigger? ACS Appl Mater Interfaces 2021;13:60837.

    Article  CAS  Google Scholar 

  5. Zhi D, Yang T, O’hagan J, Zhang S, Donnelly RF. Photothermal therapy. J Control Release 2020;325:52.

    Article  CAS  Google Scholar 

  6. Zhao P, Jin Z, Chen Q, Yang T, Chen D, Meng J, Lu X, Gu Z, He Q. Local generation of hydrogen for enhanced photothermal therapy. Nat Commun 2018;9:1.

    Article  Google Scholar 

  7. Gao P, Wang H, Cheng Y. Strategies for efficient photothermal therapy at mild temperatures: progresses and challenges. Chin Chem Lett 2022;33:575.

    Article  CAS  Google Scholar 

  8. Zhu X, Feng W, Chang J, Tan YW, Li J, Chen M, Sun Y, Li F. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nat Commun 2016;7:1.

    CAS  Google Scholar 

  9. Zhen X, Xie C, Pu K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew Chem Int Ed 2018;130:4002.

    Article  Google Scholar 

  10. Shen S, Feng L, Qi S, Cao J, Ge Y, Wu L, Wang S. Reversible thermochromic nanoparticles composed of a eutectic mixture for temperature-controlled photothermal therapy. Nano Lett 2020;20:2137.

    Article  CAS  Google Scholar 

  11. Sharma A, Tyagi VV, Chen C, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 2009;13:318.

    Article  CAS  Google Scholar 

  12. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci 2014;65:67.

    Article  CAS  Google Scholar 

  13. Shchukina E, Graham M, Zheng Z, Shchukin D. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chem Soc Rev 2018;47:4156.

    Article  CAS  Google Scholar 

  14. Yu CH, Wang TR, Wei H, Diao HC, Liu N, Zhang Y, Jiang HY, Zhao P, Shan ZY, Sun ZW, Wu T, Mo XM, Yu TB. Photothermal-triggered structural change of nanofiber scaffold integrating with graded mineralization to promote tendon-bone healing. Adv Fiber Mater 2022. https://doi.org/10.1007/s42765-022-00154-7 .

    Article  Google Scholar 

  15. Hasan A, Sayigh A. Some fatty acids as phase-change thermal energy storage materials. Renew Energ 1994;4:69.

    Article  CAS  Google Scholar 

  16. Dai Y, Su J, Wu K, Ma W, Wang B, Li M, Sun P, Shen Q, Wang Q, Fan Q. Multifunctional thermosensitive liposomes based on natural phase-change material: Near-infrared light-triggered drug release and multimodal imaging-guided cancer combination therapy. ACS Appl Mater Interfaces 2019;11:10540.

    Article  CAS  Google Scholar 

  17. Agarwal S, Greiner A, Wendorff JH. Functional materials by electrospinning of polymers. Prog Polym Sci 2013;38:963.

    Article  CAS  Google Scholar 

  18. Chen L, Wang S, Yu QQ, Topham PD, Chen CZ, Wang LG. A comprehensive review of electrospinning block copolymers. Soft Matter 2019;15:2490.

    Article  CAS  Google Scholar 

  19. Chen C, Wang LG, Huang Y. A novel shape-stabilized PCM: electrospun ultrafine fibers based on lauric acid/polyethylene terephthalate composite. Mater Lett 2008;62:3515.

    Article  CAS  Google Scholar 

  20. Wu Y, Chen CZ, Jia YF, Wu J, Huang Y, Wang LG. Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Appl Energy 2018;210:167.

    Article  CAS  Google Scholar 

  21. Yu N, Wang ZJ, Zhang JL, Liu ZX, Zhu B, Yu J, Zhu MF, Peng C, Chen ZG. Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. Biomaterials 2018;161:279–91.

    Article  CAS  Google Scholar 

  22. Yu N, Qiu P, Ren Q, Wen M, Geng P, Macharia DK, Zhu MF, Chen ZG. Transforming a sword into a knife: persistent phototoxicity inhibition and alternative therapeutical activation of highly-photosensitive phytochlorin. ACS Nano 2021;15:19793–805.

    Article  CAS  Google Scholar 

  23. Yu N, Tu WZ, Qiu P, Ren Q, Chen XM, Zhu MF, Liu Y, Chen ZG. Full-route advances via biomimetic and biodegradable ultrasmall-in-nano architectures with radiation-photo synergy. Nano Today 2022;43:101427.

    Article  CAS  Google Scholar 

  24. Chang M, Hou Z, Wang M, Yang C, Wang R, Li F, Liu D, Peng T, Li C, Lin J. Single-atom pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew Chem Int Ed 2021;133:13081.

    Article  Google Scholar 

  25. Chang X, Zhang M, Wang C, Zhang J, Wu H, Yang S. Graphene oxide/bahof5/peg nanocomposite for dual-modal imaging and heat shock protein inhibitor-sensitized tumor photothermal therapy. Carbon 2020;158:372.

    Article  CAS  Google Scholar 

  26. Ali MR, Ali HR, Rankin CR, El-Sayed M. Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy. Biomaterials 2016;102:1.

    Article  CAS  Google Scholar 

  27. Xue Y, Wang Y, An J, Sedgwick A, Li M, Xie J, Hu W, Kang J, Sen S, Steinbrueck A, Zhang B, Qiao L, Wageh S, Arambula J, Liu L, Zhang H, Sessler J, Kim J. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact Mater 2022;14:76.

    Article  Google Scholar 

  28. Huang H, Yuan G, Xu Y, Gao Y, Mao Q, Zhang Y, Bai L, Li W, Wu A, Hu W, Pan Y, Zhou G. Photoacoustic and magnetic resonance imaging-based gene and photothermal therapy using mesoporous nanoagents. Bioact Mater 2022;9:157.

    Article  Google Scholar 

  29. Krukiewicz K, Zak JK. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater Sci Eng C 2016;62:927.

    Article  CAS  Google Scholar 

  30. Cui X, Liang Z, Lu J, Wang X, Jia F, Hu Q, Xiao X, Deng X, Wu Y, Sheng W. A multifunctional nanodiamond-based nanoplatform for the enhanced mild-temperature photothermal/chemo combination therapy of triple negative breast cancer via an autophagy regulation strategy. Nanoscale 2021;13:13375.

    Article  CAS  Google Scholar 

  31. Ni JS, Zhang X, Yang G, Kang T, Lin X, Zha M, Li Y, Wang L, Li K. A photoinduced nonadiabatic decay-guided molecular motor triggers effective photothermal conversion for cancer therapy. Angew Chem Int Ed 2020;132:11394.

    Article  Google Scholar 

  32. Bye FJ, Wang LG, Bullock AJ, Blackwood KA, Ryan AJ, MacNeil S. Postproduction processing of electrospun fibres for tissue engineering. J Visualized Exp 2012;66:e4172.

    Google Scholar 

  33. Sun J, Jiang H, Zhao C, Fan X, Chao C, Zhao T. Holey aligned electrodes through in-situ ZIF-8-assisted-etching for high-performance aqueous redox flow batteries. Sci Bull 2021;66:904.

    Article  CAS  Google Scholar 

  34. Wang C, Zheng T, Luo R, Liu C, Zhang M, Li J, Sun X, Shen X, Han W, Wang L. In situ growth of zif-8 on pan fibrous filters for highly efficient u (vi) removal. ACS Appl Mater Interfaces 2018;10:24164.

    Article  CAS  Google Scholar 

  35. Wu S, Ma X, Peng D, Bi Y. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials. J Therm Anal Calorim 2019;136:2353.

    Article  CAS  Google Scholar 

  36. Shamsaei E, Basquiroto de Souza F, Fouladi A, Sagoe-Crentsil K, Duan W. Graphene oxide-based mesoporous calcium silicate hydrate sandwich-like structure: synthesis and application for thermal energy storage. ACS Appl. Energy Mater 2022;5:958.

    Article  CAS  Google Scholar 

  37. Qi G, Yang J, Bao R, Xia D, Cao M, Yang W, Yang M, Wei D. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res 2017;10:802.

    Article  CAS  Google Scholar 

  38. Choi SW, Zhang Y, Xia Y. A temperature-sensitive drug release system based on phase-change materials. Angew Chem Int Ed 2010;49:7904.

    Article  CAS  Google Scholar 

  39. Abdalkarim SYH, Yu H, Wang C, Chen Y, Zou Z, Han L, Yao J, Tam KC. Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on–off drug release devices. Chem Eng J 2019;375:121979.

    Article  CAS  Google Scholar 

  40. Jin Z. About the evaluation of drug combination. Acta Pharmacol Sin 2004;25:146.

    CAS  Google Scholar 

  41. Chen L, Yu QQ, Jia YF, Xu MM, Wang YY, Wang J, Wen T, Wang LG. Micro-and-nanometer topological gradient of block copolymer fibrous scaffolds towards region-specific cell regulation. J Colloid Interf Sci 2022;606:248.

    Article  CAS  Google Scholar 

  42. Li X, Xu F, He Y, Li Y, Hou J, Yang G, Zhou S. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer. Adv Funct Mater 2020;30:2004851.

    Article  CAS  Google Scholar 

  43. Zhao J, Cui W. Functional electrospun fibers for local therapy of cancer. Adv Fiber Mater 2020;2:229.

    Article  CAS  Google Scholar 

  44. Chen L, Zhang D, Cheng K, Li WC, Yu QQ, Wang LG. Photothermal-responsive fibrous dressing with enhanced antibacterial activity and cell manipulation towards promoting wound-healing. J Colloid Interf Sci 2022;623:21.

    Article  CAS  Google Scholar 

  45. Niu W, Guo Y, Xue Y, Wang M, Chen M, Winston DD, Cheng W, Lei BJ. Biodegradable multifunctional bioactive eu-gd-si-ca glass nanoplatform for integrative imaging-targeted tumor therapy-recurrence inhibition-tissue repair. Nano Today 2021;38:101137.

    Article  CAS  Google Scholar 

  46. Wang H, Xu S, Fan D, Geng X, Zhi G, Wu D, Shen H, Yang F, Zhou X, Wang X. Multifunctional microcapsules: a theranostic agent for US/MR/PAT multi-modality imaging and synergistic chemo-photothermal osteosarcoma therapy. Bioact Mater 2022;7:453.

    Article  CAS  Google Scholar 

  47. Ma L, Zhou Y, Zhang Z, Liu Y, Zhai D, Zhuang H, Li Q, Yuye J, Wu C, Chang J. Multifunctional bioactive Nd-Ca-Si glasses for fluorescence thermometry, photothermal therapy, and burn tissue repair. Sci Adv 2020;6:eabb1311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from National Key R&D Program of China (No. 2017YFC1105003, 2021YFB3802700), National Natural Science Foundation of China (No. 21807046), Guangdong Project (No. 2016ZT06C322), National Natural Science Foundation of Guangdong (No. 2020A151501744), Science and Technology Program of Guangzhou (No. 202102020759), Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515111174), and Overseas Expertise Introduction Center for Discipline Innovation (“111 Center”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linge Wang or Qianqian Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1289 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Sun, X., Cheng, K. et al. Temperature-Regulating Phase Change Fiber Scaffold Toward Mild Photothermal–Chemotherapy. Adv. Fiber Mater. 4, 1669–1684 (2022). https://doi.org/10.1007/s42765-022-00199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00199-8

Keywords

Navigation