Skip to main content

Advertisement

Log in

Decellularized Extracellular Matrix Containing Electrospun Fibers for Nerve Regeneration: A Comparison Between Core–Shell Structured and Preblended Composites

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Advanced biomaterial-based strategies for treatment of peripheral nerve injury require precise control over both topological and biological cues for facilitating rapid and directed nerve regeneration. As a highly bioactive and tissue-specific natural material, decellularized extracellular matrix (dECM) derived from peripheral nerves (decellularized nerve matrix, DNM) has drawn increasing attention in the field of regenerative medicine, due to its outstanding capabilities in facilitating neurite outgrowth and remyelination. To induce and maintain sufficient topological guidance, electrospinning was conducted for fabrication of axially aligned nanofibers consisting of DNM and poly(ε-caprolactone) (PCL). Core–shell structured fibers were prepared by coaxial electrospinning using DNM as the shell and PCL as the core. Compared to the aligned electrospun fibers using preblended DNM/PCL, the core–shell structured fibers exhibited lower tensile strength, faster degradation, but considerable toughness for nerve guidance conduit preparation and relatively intact fibrous structure after long-term degradation. More importantly, the full DNM surface coverage of the aligned core–shell fibers effectively promoted axonal extension and Schwann cells migration. The DNM contents further triggered neurite bundling and myelin formation toward nerve fiber maturation and functionalization. Herein, we not only pursue a multi-functional scaffold design for nerve regeneration, a detailed comparison between core–shell structured and preblended electrospinning of DNM/PCL composites was also provided as an applicable paradigm for advanced tissue-engineered strategies using dECM-based biomaterials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yan H, Zhang F, Chen MB, Lineaweaver WC. Conduit luminal additives for peripheral nerve repair. Int Rev Neurobiol 2009;87:199–225.

    Article  CAS  Google Scholar 

  2. Hadlock T, Elisseeff J, Langer R, Vacanti J, Cheney M. A tissue-engineered conduit for peripheral nerve repair. Arch Otolaryngol Head Neck Surg 1998;124(10):1081–6.

    Article  CAS  Google Scholar 

  3. Evans GR. Challenges to nerve regeneration. Semin Surg Oncol 2000;19(3):312–8.

    Article  CAS  Google Scholar 

  4. Bellamkonda RV. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 2006;27(19):3515–8.

    CAS  Google Scholar 

  5. Zhang PX, Han N, Kou YH, Zhu QT, Liu XL, Quan DP, et al. Tissue engineering for the repair of peripheral nerve injury. Neural Regen Res 2019;14(1):51–8.

    Article  Google Scholar 

  6. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603–10.

    Article  CAS  Google Scholar 

  7. Xie JW, Liu WY, MacEwan MR, Bridgman PC, Xia YN. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 2014;8(2):1878–85.

    Article  CAS  Google Scholar 

  8. Wu T, Xue JJ, Xia YN. Engraving the surface of electrospun microfibers with nanoscale grooves promotes the outgrowth of neurites and the migration of schwann cells. Angew Chem Int Edit 2020;59(36):15626–32.

    Article  CAS  Google Scholar 

  9. Liu WY, Thomopoulos S, Xia YN. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 2012;1(1):10–25.

    Article  CAS  Google Scholar 

  10. Sv A, Msp B, Sv B, Fs C, Hrvd E. An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen 2021;2:1–18.

    Google Scholar 

  11. Diban N, Ramos-Vivas J, Remuzgo-Martinez S, Ortiz I, Urtiaga A. Poly(epsilon-caprolactone) films with favourable properties for neural cell growth. Curr Top Med Chem 2014;14(23):2743–9.

    Article  CAS  Google Scholar 

  12. Cheng L, Wang Y, Sun G, Wen S, Deng L, Zhang H, et al. Hydration-enhanced lubricating electrospun nanofibrous membranes prevent tissue adhesion. Research 2020;2020:4907185.

    CAS  Google Scholar 

  13. Li DW, Pan X, Sun BB, Wu T, Chen WM, Huang C, et al. Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. J Mater Chem B 2015;3(45):8823–31.

    Article  CAS  Google Scholar 

  14. Timnak A, Gharebaghi FY, Shariati RP, Bahrami SH, Javadian S, Emami SH, et al. Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. J Mater Sci-Mater M 2011;22(6):1555–67.

    Article  CAS  Google Scholar 

  15. Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharmaceut 2017;523(2):441–53.

    Article  CAS  Google Scholar 

  16. Wittmer CR, Claudepierre T, Reber M, Wiedemann P, Garlick JA, Kaplan D, et al. Multifunctionalized electrospun silk fibers promote axon regeneration in the central nervous system. Adv Funct Mater 2011;21(22):4232–42.

    Article  CAS  Google Scholar 

  17. Wang CY, Liu JJ, Fan CY, Mo XM, Ruan HJ, Li FF. The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. J Biomat Sci-Polym E 2012;23(1–4):167–84.

    Article  CAS  Google Scholar 

  18. Liu CY, Wang C, Zhao QL, Li XH, Xu FY, Yao XM, et al. Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Biomed Mater 2018;13(4):044107.

    Article  Google Scholar 

  19. Chang YC, Chen MH, Liao SY, Wu HC, Kuan CH, Sun JS, et al. Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system. Acs Appl Mater Inter 2017;9(43):37623–36.

    Article  CAS  Google Scholar 

  20. Mukhatyar VJ, Salmeron-Sanchez M, Rudra S, Mukhopadaya S, Barker TH, Garcia AJ, et al. Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials 2011;32(16):3958–68.

    Article  CAS  Google Scholar 

  21. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27(19):3675–83.

    CAS  Google Scholar 

  22. Han W, Singh NK, Kim JJ, Kim H, Kim BS, Park JY, et al. Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks. Biomaterials 2019;224:119496.

    Article  CAS  Google Scholar 

  23. Zou JL, Liu S, Sun JH, Yang WH, Xu YW, Rao ZL, et al. Peripheral nerve-derived matrix hydrogel promotes remyelination and inhibits synapse formation. Adv Funct Mater 2018;28(13):1705739.

    Article  CAS  Google Scholar 

  24. Lin T, Liu S, Chen SH, Qiu S, Rao ZL, Liu JH, et al. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 2018;73:326–38.

    Article  CAS  Google Scholar 

  25. Rao ZL, Lin T, Qiu S, Zhou J, Liu S, Chen SH, et al. Decellularized nerve matrix hydrogel scaffolds with longitudinally oriented and size-tunable microchannels for peripheral nerve regeneration. Mat Sci Eng C-Mater 2021;120:111791.

    Article  CAS  Google Scholar 

  26. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomat Sci-Polym E 2008;19(5):635–52.

    Article  CAS  Google Scholar 

  27. Smoak MM, Han A, Watson E, Kishan A, Grande-Allen KJ, Cosgriff-Hernandez E, et al. Fabrication and characterization of electrospun decellularized muscle-derived scaffolds. Tissue Eng Part C-Me 2019;25(5):276–87.

    Article  CAS  Google Scholar 

  28. Patel KH, Dunn AJ, Talovic M, Haas GJ, Marcinczyk M, Elmashhady H, et al. Aligned nanofibers of decellularized muscle ECM support myogenic activity in primary satellite cells in vitro. Biomed Mater 2019;14(3):035010.

    Article  CAS  Google Scholar 

  29. Baiguera S, Del Gaudio C, Lucatelli E, Kuevda E, Boieri M, Mazzanti B, et al. Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials 2014;35(4):1205–14.

    Article  CAS  Google Scholar 

  30. Wen XX, Wang Y, Guo ZY, Meng HY, Huang JX, Zhang L, et al. Cauda equina-derived extracellular matrix for fabrication of nanostructured hybrid scaffolds applied to neural tissue engineering. Tissue Eng Pt A 2015;21(5–6):1095–105.

    Article  CAS  Google Scholar 

  31. Chen SH, Du ZY, Zou JL, Qiu S, Rao ZL, Liu S, et al. Promoting neurite growth and schwann cell migration by the harnessing decellularized nerve matrix onto nanofibrous guidance. Acs Appl Mater Inter 2019;11(19):17167–76.

    Article  CAS  Google Scholar 

  32. Zheng CS, Yang ZH, Chen SH, Zhang F, Rao ZL, Zhao CL, et al. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics 2021;11(6):2917–31.

    Article  CAS  Google Scholar 

  33. Kim TH, Jung Y, Kim SH. Nanofibrous electrospun heart decellularized extracellular matrix-based hybrid scaffold as wound dressing for reducing scarring in wound healing. Tissue Eng Pt A 2018;24(9–10):830–48.

    Article  CAS  Google Scholar 

  34. Schoen B, Avrahami R, Baruch L, Efraim Y, Goldfracht I, Elul O, et al. Electrospun extracellular matrix: paving the way to tailor-made natural scaffolds for cardiac tissue regeneration. Adv Funct Mater 2017;27(34):1700427.

    Article  CAS  Google Scholar 

  35. Young BM, Shankar K, Allen BP, Pouliot RA, Schneck MB, Mikhaiel NS, et al. Electrospun decellularized lung matrix scaffold for airway smooth muscle culture. Acs Biomater Sci Eng 2017;3(12):3480–92.

    Article  CAS  Google Scholar 

  36. Zhang YZ, Huang ZM, Xu XJ, Lim CT, Ramakrishna S. Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chem Mater 2004;16(18):3406–9.

    Article  CAS  Google Scholar 

  37. Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-shell fibers: design, roles, and controllable release strategies in tissue engineering and drug delivery. Polymers-Basel. 2019;11(12):2008.

    Article  CAS  Google Scholar 

  38. Tian LL, Prabhakaran MP, Hu J, Chen ML, Besenbacher F, Ramakrishna S. Coaxial electrospun poly(lactic acid)/silk fibroin nanofibers incorporated with nerve growth factor support the differentiation of neuronal stem cells. Rsc Adv 2015;5(62):49838–48.

    Article  CAS  Google Scholar 

  39. Adeli-Sardou M, Yaghoobi MM, Torkzadeh-Mahani M, Dodel M. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int J Biol Macromol 2019;124:478–91.

    Article  CAS  Google Scholar 

  40. Baek J, Lee E, Lotz MK, D’Lima DD. Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration. Nanomed-Nanotechnol 2020;23:102090.

    Article  CAS  Google Scholar 

  41. Qiu S, Rao ZL, He FL, Wang T, Xu YW, Du ZY, et al. Decellularized nerve matrix hydrogel and glial-derived neurotrophic factor modifications assisted nerve repair with decellularized nerve matrix scaffolds. J Tissue Eng Regen M 2020;14(7):931–43.

    Article  CAS  Google Scholar 

  42. Gao S, Guo WM, Chen MX, Yuan ZG, Wang MJ, Zhang Y, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. J Mater Chem B 2017;5(12):2273–85.

    Article  CAS  Google Scholar 

  43. Van Vactor D. Adhesion and signaling in axonal fasciculation. Curr Opin Neurobiol 1998;8(1):80–6.

    Article  Google Scholar 

  44. Chun HJ, Motta A, Reis RL, Khang G. Biomimicked biomaterials advances in tissue engineering and regenerative medicine preface. Adv Exp Med Biol. 2020;1250:V-U9.

  45. Francis MP, Sachs PC, Madurantakam PA, Sell SA, Elmore LW, Bowlin GL, et al. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J Biomed Mater Res Part A 2012;100a(7):1716–24.

    Article  CAS  Google Scholar 

  46. Feng B, Duan HC, Fu W, Cao YL, Zhang WJ, Zhang YZ. Effect of inhomogeneity of the electrospun fibrous scaffolds of gelatin/polycaprolactone hybrid on cell proliferation. J Biomed Mater Res Part A 2015;103(2):431–8.

    Article  CAS  Google Scholar 

  47. Valentin JE, Badylak JS, Mccabe GP, Badylak SF. Extracellular matrix bioscaffolds for orthopaedic applications—a comparative histologic study. J Bone Joint Surg Am 2006;88a(12):2673–86.

    Article  Google Scholar 

  48. Gao S, Yuan ZG, Guo WM, Chen MX, Liu SY, Xi TF, et al. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci. Mat Sci Eng C-Mater 2017;71:891–900.

    Article  CAS  Google Scholar 

  49. Zhang YZ, Feng Y, Huang ZM, Ramakrishna S, Lim CT. Fabrication of porous electrospun nanofibres. Nanotechnology 2006;17(3):901–8.

    Article  CAS  Google Scholar 

  50. Kwon IK, Matsuda T. Co-electrospun nanofiber fabrics of poly(l-lactide-co-epsilon-caprolactone) with type I collagen or heparin. Biomacromol 2005;6(4):2096–105.

    Article  CAS  Google Scholar 

  51. Boyce HMPaST. Engineered human skin fabricated using electrospun collagen–PCL blends: morphogenesis and mechanical properties. Tissue Eng 2009;15(8):2177–87.

    Article  Google Scholar 

  52. Dong B, Arnoult O, Smith ME, Wnek GE. Electrospinning of collagen nanofiber scaffolds from benign solvents. Macromol Rapid Comm 2009;30(7):539–42.

    Article  CAS  Google Scholar 

  53. Buerck J, Heissler S, Geckle U, Ardakani MF, Schneider R, Ulrich AS, et al. Resemblance of electrospun collagen nanofibers to their native structure. Langmuir 2013;29(5):1562–72.

    Article  CAS  Google Scholar 

  54. Feng B, Tu HB, Yuan HH, Peng HJ, Zhang YZ. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL. Biomacromol 2012;13(12):3917–25.

    Article  CAS  Google Scholar 

  55. Nagiah N, Johnson R, Anderson R, Elliott W, Tan W. Highly compliant vascular grafts with gelatin-sheathed coaxially structured nanofibers. Langmuir 2015;31(47):12993–3002.

    Article  CAS  Google Scholar 

  56. Surrao DC, Hayami JWS, Waldman SD, Amsden BG. Self-crimping, biodegradable, electrospun polymer microfibers. Biomacromol 2010;11(12):3624–9.

    Article  CAS  Google Scholar 

  57. Tatsuo Ushiki CI. Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy. Cell Tissue Res 1990;1990(260):175–84.

    Article  Google Scholar 

  58. Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng 2018;15(2):021003.

    Article  Google Scholar 

  59. Zhang N, Milbreta U, Chin JS, Pinese C, Lin JQ, Shirahama H, et al. Biomimicking fiber scaffold as an effective in vitro and in vivo microrna screening platform for directing tissue regeneration. Adv Sci 2019;6(9):1800808.

    Article  CAS  Google Scholar 

  60. Zhang N, Lin JQ, Lin VPH, Milbreta U, Chin JS, Chew EGY, et al. A 3D fiber-hydrogel based non-viral gene delivery platform reveals that microRNAs promote axon regeneration and enhance functional recovery following spinal cord injury. Adv Sci 2021;8(15):2100805.

    Article  CAS  Google Scholar 

  61. Wen XJ, Tresco PA. Effect of filament diameter and extracellular matrix molecule precoating on neurite outgrowth and Schwann cell behavior on multifilament entubulation bridging device in vitro. J Biomed Mater Res Part A 2006;76a(3):626–37.

    Article  CAS  Google Scholar 

  62. Wang HB, Mullins ME, Cregg JM, McCarthy CW, Gilbert RJ. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater 2010;6(8):2970–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hong Zhai for her technical support in material characterizations. This work was funded by National Key R&D Program of China (No. 2018YFC1106001), National Natural Science Foundation of China (51903255 and 52073314), The Key Areas Research and Development Program of Guangdong (2020B1111150003 and 2019B020235001), Science and Technology Program of Guangzhou City (201904010364).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Bai or Daping Quan.

Ethics declarations

Conflict of Interest

The authors declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8425 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, R., Luo, Z., Rao, Z. et al. Decellularized Extracellular Matrix Containing Electrospun Fibers for Nerve Regeneration: A Comparison Between Core–Shell Structured and Preblended Composites. Adv. Fiber Mater. 4, 503–519 (2022). https://doi.org/10.1007/s42765-021-00124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00124-5

Keywords

Navigation