Skip to main content
Log in

The Structure and Properties of Polyethylene Oxide Reinforced Poly(Metaphenylene Isophthalamide) Fibers

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In this paper, the effect of poly (ethylene oxide) (PEO) as an additive on the structure and properties of poly (m-phenylene dimethylene terephthalamide) (PMIA) fibers obtained by wet spinning was investigated. The tensile strength of the composite fibers was substantially enhanced compared to the pure PMIA fiber. This was due to the fact that the addition of PEO weakens the hydrogen bonding between PMIA molecular chains resulting in an improved orientation of the composite fibers. It was found that the optimum PEO addition was 2% and the tensile strength of the composite fiber was 4.74 cN/dtex, which was 76% higher compared to the pure PMIA fiber. However, the heat resistance and flame retardancy of the composite fibers were basically unchanged compared to the pure PMIA fiber. The modification method is simple, with low raw material cost and good stability, and has not only good academic value but also excellent industrial value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. García JM, García FC, Serna F, de la Peña JL. High-performance aromatic polyamides. Prog Polym Sci 2010;35:623.

    Article  Google Scholar 

  2. Li N, Zhang X-K, Yu J-R, Wang Y, Zhu J, Hu Z-M. Increased hydrogen-bonding of Poly(m-phenylene isophthalamide) (PMIA) with sulfonate moiety for high-performance easily dyeable fiber. Chin J Polym Sci 2020;38:1230–8.

    Article  CAS  Google Scholar 

  3. Li Y, Ma X, Deng N, Kang W, Zhao H, Li Z, Cheng B. Electrospun SiO2/PMIA nanofiber membranes with higher ionic conductivity for high temperature resistance lithium-ion batteries. Fibers Polym 2017;18:212.

    Article  CAS  Google Scholar 

  4. Liu L, Mo J, Li J, Liu J, Yan H, Lyu J, Jiang B, Chu L, Li M. Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries. J Energy Chem 2020;48:334.

    Article  Google Scholar 

  5. Mazzocchetti L, Benelli T, Maccaferri E, Merighi S, Belcari J, Zucchelli A, Giorgini L. Poly-m-aramid electrospun nanofibrous mats as high-performance flame retardants for carbon fiber reinforced composites. Compos B Eng 2018;145:252.

    Article  CAS  Google Scholar 

  6. Ouyang S, Wang T, Yu Y, Yang B, Yao J, Wang S. From trans to cis conformation: further understanding the surface properties of poly(m-phenylene isophthalamide). ACS Omega 2017;2:290.

    Article  CAS  Google Scholar 

  7. Wang X, Si Y, Wang X, Yang J, Ding B, Chen L, Hu Z, Yu J. Tuning hierarchically aligned structures for high-strength PMIA-MWCNT hybrid nanofibers. Nanoscale 2013;5:886.

    Article  CAS  Google Scholar 

  8. Wang Z, Li T, Yu J, Hu Z, Zhu J, Wang Y. Constructing flexible and CuS-coated meta-aramid/polyacrylonitrile composite films with excellent coating adhesion. Ind Eng Chem Res 2019;58:17965.

    Article  CAS  Google Scholar 

  9. Yang M, Zhao C, Zhang S, Li P, Hou D. Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property. Appl Surf Sci 2017;394:149.

    Article  CAS  Google Scholar 

  10. Zhai Y, Wang N, Mao X, Si Y, Yu J, Al-Deyab SS, El-Newehy M, Ding B. Sandwich-structured PVdF/PMIA/PVdF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries. J Mater Chem A 2014;2:14511.

    Article  CAS  Google Scholar 

  11. Zhang H, Zhang Y, Xu T, John AE, Li Y, Li W, Zhu B. Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries. J Power Sources 2016;329:8.

    Article  CAS  Google Scholar 

  12. Zhang X, Tang X, Wang R, Wang R, Yan X, Shi M. Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers. Fibers Polym 2017;18:1421.

    Article  CAS  Google Scholar 

  13. Trigo-López M, Miguel-Ortega Á, Vallejos S, Muñoz A, Izquierdo D, Colina Á, García FC, García JM. Intrinsically colored wholly aromatic polyamides (aramids). Dyes Pigm 2015;122:177.

    Article  Google Scholar 

  14. Wang L, Zhang M, Yang B, Ding X, Tan J, Song S, Nie J. Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications. ACS Appl Mater Interfaces 2021;13:5486.

    Article  CAS  Google Scholar 

  15. Jiang Q, Tian H, Zhang K. Enhanced performance of poly(m-phenylene isophthalamide) (PMIA) composite hollow fibre ultrafiltration membranes by O-MoS2 nanosheets modification. Desalin Water Treat 2019;166:245.

    Article  CAS  Google Scholar 

  16. Malafeev KV, Moskalyuk OA, Yudin VE, Morganti P, Ivan’kova EM, Popova EN, Elokhovskii VY, Vaganov GV. Study of physicomechanical properties of composite fibers based on polylactide and modified chitin nanofibrils. Polym Sci Ser A 2020;62:249.

    Article  CAS  Google Scholar 

  17. Yan M, Shi J, Tang S, Liu L, Zhu H, Zhou G, Zeng J, Zhang H, Yu Y, Guo J. Strengthening and toughening sodium alginate fibers using a dynamically cross-linked network of inorganic nanoparticles and sodium alginate through the hydrogen bonding strategy. New J Chem 2021;45:10362.

    Article  CAS  Google Scholar 

  18. Wang Z, Li T, Yu J, Hu Z, Zhu J, Wang Y. General bioinspired, innovative method for fabrication of surface-nickeled meta-aramid fibers. Ind Eng Chem Res 2019;58:9458.

    Article  CAS  Google Scholar 

  19. Barani H, Bahrami SH. Preparation of polyacrylonitrile and cellulose acetate blend fibers through wet-spinning. J Appl Polym Sci 2000;2007:103.

    Google Scholar 

  20. Wu K, Yu J, Yang J, Chen S, Wang X, Zhang Y, Wang H. Properties and phase morphology of cellulose/aromatic polysulfonamide alloy fibers regulated by the viscosity ratio of solution. Cellulose 2017;25:903.

    Article  Google Scholar 

  21. Chen J, Guo J, Zhao M, Zhang R, Guan F. Hydrogen bonding in chitosan/Antarctic krill protein composite system: study on construction and enhancement mechanism. Int J Biol Macromol 2020;142:513.

    Article  CAS  Google Scholar 

  22. Lei X, Ye D, Chen J, Tang S, Sun P, Chen L, Lu A, Du Y, Zhang L. Customizable multidimensional self-wrinkling structure constructed via modulus gradient in chitosan hydrogels. Chem Mater 2019;31:10032.

    Article  CAS  Google Scholar 

  23. Xu Z, Yang T, Chu X, Su H, Wang Z, Chen N, Gu B, Zhang H, Deng W, Zhang H, Yang W. Strong lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability li-metal battery. ACS Appl Mater Interfaces 2020;12:10341.

    Article  CAS  Google Scholar 

  24. Zare Y, Rhee KY. Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Compos B Eng 2019;156:100.

    Article  CAS  Google Scholar 

  25. Kupka V, Dvorakova E, Manakhov A, Michlicek M, Petrus J, Vojtova L, Zajickova L. Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polymers (Basel). 2020;12:1403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51473031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junrong Yu.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Wu, W., Wang, Y. et al. The Structure and Properties of Polyethylene Oxide Reinforced Poly(Metaphenylene Isophthalamide) Fibers. Adv. Fiber Mater. 4, 436–447 (2022). https://doi.org/10.1007/s42765-021-00110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00110-x

Keywords

Navigation