Skip to main content

Advertisement

Log in

Effects and Mechanism of Continuous Liming on Cadmium Immobilization and Uptake by Rice Grown on Acid Paddy Soils

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Lime application is the most effective agricultural practice for the reduction of cadmium (Cd) bioavailability in acid soils. This study was conducted to investigate the impact of continuous liming across five consecutive growing seasons on the remediation of Cd in acid paddy soils, as well as rice yield. Two rice cultivars, i.e., Zhuliangyou 819 and Xiangwanxian 12, were cultivated in Cd-contaminated paddy soil for five consecutive growing seasons from 2014 to 2018. The investigated lime levels were 0, 450, 900, 1350, 1800, 2250, 3000, and 3750 kg ha−1. Lime application significantly increased rice yield, soil pH, exchangeable soil Ca2+, and rice calcium (Ca) contents; besides, it reduced soil and rice Cd contents. The application of lime at the rate of 1350–2250 kg ha−1 significantly increased rice yield. Under continuous liming, rice yield obviously increased first and then decreased with the cumulative application of lime. The application of a cumulative lime amount of 18,000 kg ha−1 was identified as the critical transition point of soil pH, soil Cd, and rice Cd content. Application of lime up to or above 3000 kg ha−1 per season reduced Cd content in brown rice below 0.20 mg kg−1. The results suggest that the reduction in effective Cd content might be a result of the combined action of exchangeable soil Ca2+ and soil pH rather than being a direct effect of Ca2+. Therefore, acid Cd-contaminated paddy fields can realize the safe production of rice by the continuous application of an appropriate amount of lime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Elwafa SF, Amin A, Shehzad T (2019) Genetic mapping and transcriptional profiling of phytoremediation and heavy metals responsive genes in sorghum. Ecotoxicol Environ Saf 173:366–372. https://doi.org/10.1016/j.ecoenv.2019.02.022

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Singh MV (2008) Remediation of cadmium pollution in soils by different amendments: a column study. Commun Soil Sci Plant Anal 39(3–4):386–396. https://doi.org/10.1080/00103620701826514

    Article  CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York

    Book  Google Scholar 

  • Almaroai YA, Eissa MA (2020) Effect of biochar on yield and quality of tomato grown on a metal-contaminated soil. Sci Hortic 265:109210. https://doi.org/10.1016/j.scienta.2020.109210

    Article  Google Scholar 

  • Al-Sayed H, Hegab S, Youssef M, Khalafalla M, Almaroai YA, Ding Z, Eissa MA (2020) Evaluation of quality and growth of roselle (Hibiscus sabdariffa L.) as affected by bio-fertilizers. Journal of plant nutrition. 43:7, 1025-1035, DOI: https://doi.org/10.1080/01904167.2020.1711938

  • Andrews P, Town R, Hedley M, Loganathan P (1996) Measurement of plant-available cadmium in New Zealand soils. Soil Research 34(3):441–452. https://doi.org/10.1071/SR9960441

    Article  Google Scholar 

  • Azouzi R, Charef A, Hamzaoui AH (2015) Assessment of effect of pH, temperature and organic matter on zinc mobility in a hydromorphic soil. Environ Earth Sci 74(4):2967–2980. https://doi.org/10.1007/s12665-015-4328-4

    Article  CAS  Google Scholar 

  • Baba H, Tsuneyama K, Yazaki M, Nagata K, Minamisaka T, Tsuda T, Nomoto K, Hayashi S, Miwa S, Nakajima T, Nakanishi Y, Aoshima K, Imura J (2013) The liver in itai-itai disease (chronic cadmium poisoning): pathological features and metallothionein expression. Mod Pathol 26(9):1228–1234. https://doi.org/10.1038/modpathol.2013.62

    Article  CAS  PubMed  Google Scholar 

  • Bian R, Li L, Bao D, Zheng J, Zhang X, Zheng J, Liu X, Cheng K, Pan G (2016) Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ Sci Pollut Res 23(10):10028–10036. https://doi.org/10.1007/s11356-016-6214-3

    Article  CAS  Google Scholar 

  • Bolan NS, Adriano DC, Mani PA, Duraisamy A (2003) Immobilization and phytoavailability of cadmium in variable charge soils. II Effect of lime addition Plant and Soil 251(2):187–198. https://doi.org/10.1023/A:1023037706905

    Article  CAS  Google Scholar 

  • Carran RA (1991) Calcium magnesium imbalance in clovers: a cause of negative yield response to liming. Plant Soil 134(1):107–114. https://doi.org/10.1007/BF00010722

    Article  CAS  Google Scholar 

  • Chan KY, Heenan DP (1998) Effect of lime (CaCO3) application on soil structural stability of a red earth. Soil Research 36(1):73–86. https://doi.org/10.1071/S97054

    Article  Google Scholar 

  • Chen Y, Xie T, Liang Q, Liu M, Zhao M, Wang M, Wang G (2016) Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes. Environ Sci Pollut Res 23(8):7757–7766. https://doi.org/10.1007/s11356-015-5930-4

    Article  CAS  Google Scholar 

  • Cheng Y, Wang J, Mary B, Zhang J, Cai Z, Chang SX (2013) Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in Central Alberta, Canada. Soil Biol Biochem 57:848–857. https://doi.org/10.1016/j.soilbio.2012.08.021

    Article  CAS  Google Scholar 

  • Choppala G, Bolan N, Lamb D, Kunhikrishnan A (2013) Comparative sorption and mobility of Cr(III) and Cr(VI) species in a range of soils: implications to bioavailability. Water, air, & soil pollution 224 (12):1699. https://doi.org/10.1007/s11270-013-1699-6

  • Crusciol CAC, Artigiani ACCA, Arf O, Carmeis ACA, Soratto RP, Nascente AS, Alvarez RCF (2016) Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. CATENA 137:87–99. https://doi.org/10.1016/j.catena.2015.09.009

    Article  CAS  Google Scholar 

  • Cui H, Fan Y, Fang G, Zhang H, Su B, Zhou J (2016) Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: a five-year field experiment. Ecotoxicol Environ Saf 134:148–155. https://doi.org/10.1016/j.ecoenv.2016.07.005

    Article  CAS  Google Scholar 

  • Dai Z, Zhang X, Tang C, Muhammad N, Wu J, Brookes PC, Xu J (2017) Potential role of biochars in decreasing soil acidification - a critical review. Sci Total Environ 581-582:601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169

    Article  CAS  PubMed  Google Scholar 

  • Dinesh M, Kumar C (2006) Study of the heavy metals mobility in different soils, affecting vegetation. National Academy Science Letters 28(7):8

    Google Scholar 

  • Duan C, Liu Y, Zhang H, Chen G, Song J (2020) Cadmium pollution impact on the bacterial community of haplic cambisols in Northeast China and inference of resistant genera. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-020-00201-5

  • Eissa MA (2019) Effect of cow manure biochar on heavy metals uptake and translocation by zucchini (Cucurbita pepo L). Arab J Geosci 12:48

    Article  Google Scholar 

  • Eissa MA, Negim O (2018) Heavy metals uptake and translocation by lettuce and spinach grown on a metal-contaminated soil. J Plant Nutr Soil Sci 18(4):1097–1107

  • Eissa MA, Roshdy NK (2018) Nitrogen fertilization: Effect on Cd-phytoextraction by the halophytic plant quail bush [Atriplex lentiformis (torr.) s. wats]. S Afr J Bot 115:126–131

  • Eissa MA, Nafady M, Ragheb H, Attia K (2013) Effect of soil moisture and forms of phosphorus fertilizers on corn production under sandy calcareous soil. World Appl Sci J 26(4):540–547

    Google Scholar 

  • Eissa MA, Ahmedand EM, Reichman S (2016) Production of the forage halophyte Atriplex amnicola in metal-contaminated soils. Soil Use Manag 32(3):350–356

    Article  Google Scholar 

  • El-Mahdy MT, Youssef M, Eissa MA (2018) Impact of in vitro cold stress on two banana genotypes based on physio-biochemical Evaluation. S. Afr J Bot 119:219–225

  • Fageria NK, Baligar VC (2008) Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. In: advances in agronomy, vol 99. Academic press, pp 345-399. https://doi.org/10.1016/S0065-2113(08)00407-0

  • Fageria NK, Nascente AS (2014) Management of soil acidity of South American soils for sustainable crop production. In: Sparks DL (ed) advances in agronomy, vol 128. Academic press, pp 221-275. https://doi.org/10.1016/B978-0-12-802139-2.00006-8

  • Filipović L, Romić M, Sikora S, Huić Babić K, Filipović V, Gerke HH, Romić D (2020) Response of soil dehydrogenase activity to salinity and cadmium species. J Soil Sci Plant Nutr 20(2):530–536. https://doi.org/10.1007/s42729-019-00140-w

    Article  CAS  Google Scholar 

  • Goswami B, Singh OP, Satapathy KU (2008) Comparative response of upland rice varieties to application of lime and farm yard manure in coal mine affected soils of Jaintia Hills District, Meghalaya. Environ Ecol 26(4a):4

    Google Scholar 

  • Goulding KW (2016) Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag 32(3):390–399. https://doi.org/10.1111/sum.12270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant CA (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Pedologist 54:13

    Google Scholar 

  • Hale B, Evans L, Lambert R (2012) Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field-contaminated and aged soils. J Hazard Mater 199-200:119–127. https://doi.org/10.1016/j.jhazmat.2011.10.065

    Article  CAS  PubMed  Google Scholar 

  • He T, Meng J, Chen W, Liu Z, Cao T, Cheng X, Huang Y, Yang X (2017) Effects of biochar on cadmium accumulation in rice and cadmium fractions of soil: a three-year pot experiment. BioResources 12(1):21

    Google Scholar 

  • Heasman L, Sloot HAVD, Quevauviller P (1997) Harmonization of leaching/extraction tests. Elsevier, Amsterdam, the Netherlands

  • Hirzel J, Retamal-Salgado J, Walter I, Matus I (2019) Fixation coefficient and soil residual effect of cadmium application on three biannual crop rotations at four locations in Chile. J Soil Sci Plant Nutr 19(2):450–462. https://doi.org/10.1007/s42729-019-00050-x

    Article  CAS  Google Scholar 

  • Holland JE, Bennett AE, Newton AC, White PJ, McKenzie BM, George TS, Pakeman RJ, Bailey JS, Fornara DA, Hayes RC (2018) Liming impacts on soils, crops and biodiversity in the UK: a review. Sci Total Environ 610-611:316–332. https://doi.org/10.1016/j.scitotenv.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  • Hong CO, Gutierrez J, Yun SW, Lee YB, Yu C, Kim PJ (2009) Heavy metal contamination of arable soil and corn plant in the vicinity of a zinc smelting factory and stabilization by liming. Arch Environ Contam Toxicol 56(2):190–200. https://doi.org/10.1007/s00244-008-9195-5

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Cheng H, Tao S (2016) The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ Int 92-93:515–532. https://doi.org/10.1016/j.envint.2016.04.042

    Article  CAS  PubMed  Google Scholar 

  • Jaskulska I, Jaskulski D, Kobierski M (2014) Effect of liming on the change of some agrochemical soil properties in a long-term fertilization experiment. Plant Soil Environ 60:5

    Article  Google Scholar 

  • Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri D, Kumar U, Mohanty S, Panneerselvam P, Chatterjee D, Satapathy BS, Pathak H (2020) Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: bioavailability and potential risk to human health. Sci Total Environ 699:134330. https://doi.org/10.1016/j.scitotenv.2019.134330

    Article  CAS  PubMed  Google Scholar 

  • Kunhikrishnan A, Thangarajan R, Bolan NS, Xu Y, Mandal S, Gleeson DB, Seshadri B, Zaman M, Barton L, Tang C, Luo J, Dalal R, Ding W, Kirkham MB, Naidu R (2016) Functional relationships of soil acidification, liming, and greenhouse gas flux. In: Sparks DL (ed) advances in agronomy, vol 139. Academic press, pp 1-71. https://doi.org/10.1016/bs.agron.2016.05.001

  • Li J, Xu Y (2015) Immobilization of cd in paddy soil using moisture management and amendment. Environ Sci Pollut Res 22(7):5580–5586. https://doi.org/10.1007/s11356-014-3788-5

    Article  CAS  Google Scholar 

  • Li L, Huang Z, Li H, Qu X, Peng J (2016a) A highly efficient and reliable power scheme using improved push-pull forward converter for heavy-duty train applications. Journal of advanced computational intelligence and intelligent informatics 20 (2):342-354. Doi:https://doi.org/10.20965/jaciii.2016.p0342

  • Li P, Zhao C, Zhang Y, Wang X, Wang X, Wang J, Wang F, Bi Y (2016b) Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma 253(1):185–200. https://doi.org/10.1007/s00709-015-0810-9

    Article  CAS  PubMed  Google Scholar 

  • Li K, Yu H, Li T, Chen G, Huang F (2017) Cadmium accumulation characteristics of low-cadmium rice (Oryza sativa L.) line and F1 hybrids grown in cadmium-contaminated soils. Environ Sci Pollut Res 24(21):17566–17576. https://doi.org/10.1007/s11356-017-9350-5

    Article  CAS  Google Scholar 

  • Li Q, Zhang P, Zhou H, P-q P, Zhang K, J-x M, Li J, Liao B-h (2020) Effects of Cd-resistant bacteria and calcium carbonate + sepiolite on Cd availability in contaminated paddy soil and on Cd accumulation in brown rice grains. Ecotoxicol Environ Saf 195:110492. https://doi.org/10.1016/j.ecoenv.2020.110492

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Tian G, Jiang D, Zhang C, Kong L (2016) Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale. Environ Sci Pollut Res 23(18):17941–17952

  • Loganathan P, Vigneswaran S, Kandasamy J, Naidu R (2012) Cadmium sorption and desorption in soils: a review. Crit Rev Environ Sci Technol 42(5):489–533. https://doi.org/10.1080/10643389.2010.520234

    Article  CAS  Google Scholar 

  • Merida-Garcia R, Liu G, He S, Gonzalez-Dugo V, Dorado G, Galvez S, Solis I, Zarco-Tejada PJ, Reif JC, Hernandez P (2019) Genetic dissection of agronomic and quality traits based on association mapping and genomic selection approaches in durum wheat grown in Southern Spain. PLoS One 14(2):e0211718. https://doi.org/10.1371/journal.pone.0211718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osman W, El-Samad LM, ELH M, El-Touhamy A, Shonouda M (2015) Ecological, morphological, and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution. Environ Sci Pollut Res 22(18):14104–14115. https://doi.org/10.1007/s11356-015-4606-4

    Article  CAS  Google Scholar 

  • Österås AH, Greger M (2006) Interactions between calcium and copper or cadmium in Norway spruce. Biol Plant 50(4):647–652. https://doi.org/10.1007/s10535-006-0101-6

    Article  Google Scholar 

  • Pagani A, Mallarino AP (2012) Soil pH and crop grain yield as affected by the source and rate of lime. Soil Sci Soc Am J 76(5):1877–1886. https://doi.org/10.2136/sssaj2012.0119

    Article  CAS  Google Scholar 

  • Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis: chemical and microbiological properties. Agronomy monograph, vol 9.2. American Society of Agronomy, soil science Society of America, Madison, WI. https://doi.org/10.2134/agronmonogr9.2.frontmatter

  • Previna S, Baskar A (2012) Lime and gypsum to mitigate soil problems in rice cultivation in the bahour commune of union territory of Puducherry. Madras Agricultural Journal 99(1/3):3

    Google Scholar 

  • Puga AP, Abreu CA, Melo LCA, Beesley L (2015) Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manag 159:86–93. https://doi.org/10.1016/j.jenvman.2015.05.036

    Article  CAS  Google Scholar 

  • Rahman MA, Chikushi J, Duxbury JM, Meisner CA, Lauen JG, Yasunaga E (2005) Chemical control of soil environment by lime and nutrients to improve the productivity of acidic alluvial soils under rice-wheat cropping system in Bangladesh. Environment Control in Biology 43(4):259–266. https://doi.org/10.2525/ecb.43.259

    Article  Google Scholar 

  • Rees F, Germain C, Sterckeman T, Morel J (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395(1):57–73. https://doi.org/10.1007/s11104-015-2384-x

    Article  CAS  Google Scholar 

  • Rekaby SA, Awad M, Hegab S, Eissa MA (2020) Effect of some organic amendments on barley plants under saline condition. J Plant Nutr 43:1840–1851. https://doi.org/10.1080/01904167.2020.1750645

    Article  CAS  Google Scholar 

  • Roosens N, Verbruggen N, Meerts P, Ximénez-Embún P, Smith J (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant Cell Environ 26(10):1657–1672. https://doi.org/10.1046/j.1365-3040.2003.01084.x

    Article  CAS  Google Scholar 

  • Simón M, Diez M, González V, García I, Martín F, de Haro S (2010) Use of liming in the remediation of soils polluted by sulphide oxidation: a leaching-column study. J Hazard Mater 180(1):241–246. https://doi.org/10.1016/j.jhazmat.2010.04.020

    Article  CAS  PubMed  Google Scholar 

  • Skroder H, Hawkesworth S, Kippler M, El Arifeen S, Wagatsuma Y, Moore SE, Vahter M (2015) Kidney function and blood pressure in preschool-aged children exposed to cadmium and arsenic--potential alleviation by selenium. Environ Res 140:205–213. https://doi.org/10.1016/j.envres.2015.03.038

    Article  CAS  PubMed  Google Scholar 

  • Sumner M, Noble A (2003) Handbook of soil acidity. Marcel Dekker, New York

    Google Scholar 

  • Sun YY, Xu SH (2013) Characteristic of Zn2+/Cd2+/NH4+ transport in soils with different pH value and ionic strength. Transactions of the Chinese Society of Agricultural Engineering 29(12):10

    Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281(1):325–337. https://doi.org/10.1007/s11104-005-4642-9

    Article  CAS  Google Scholar 

  • Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Fan Z (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul 69:11–20. https://doi.org/10.1007/s10725-012-9742-y

    Article  CAS  Google Scholar 

  • Wang S, Huang D, Zhu Q, Zhu H, Liu S, Luo Z, Cao X, Wang J, Rao Z, Shen X (2015) Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw. Environ Sci Pollut Res 22(4):2679–2686. https://doi.org/10.1007/s11356-014-3515-2

    Article  CAS  Google Scholar 

  • Wu LS, Gu ZL, Xie SQ, Zhou DZ (1992). Effects of Additives on the Biological Toxicities of Copper and Cadmium in Soil Extracts. Acta Pedol Sin 29(4):377–382 (in Chinese)

  • Xiao R, Huang Z, Li X, Chen W, Deng Y, Han C (2017) Lime and phosphate amendment can significantly reduce uptake of cd and Pb by field-grown rice. Sustainability 9(3):430

    Article  Google Scholar 

  • Yi JX, Lu LX, Liu GD (2006) Research on soil acidification and acidic soil′s melioration. Journal of South China University of Tropical Agriculture 12(1):6

    Google Scholar 

  • Youssef M, Eissa MA (2017) Comparison between organic and inorganic nutrition for tomato. J Plant Nutr 40(13):1900–1907

    Article  CAS  Google Scholar 

  • Zaimoglu Z, Erdogan R, Kekec S, Sucu Y, Budak F (2009) Heavy metal uptake by Aptenia cordifolia as utility for sewage sludge compost recuperation using leachate. Asian J Chem 2(2):9

    Google Scholar 

  • Zeng TT, Cai ZJ, Wang XL, Liang WJ, Zhou SW, Xu MG (2017) Integrated analysis of liming for increasing crop yield in acidic soils. Sci Agric Sin 50(13):2519–2527. https://doi.org/10.3864/j.issn.0578-1752.2017.13.011

    Article  Google Scholar 

  • Zhou W, Wang H, Li CH, Lin B (2001) Effects of calcium carbonate addition on transformation of cadmium species in soil and cadmium forms in leaves of maize. Acta Pedol Sin 38(2)

Download references

Funding

This research was supported by National Key Research and Development Program of China (2016YFD0800705), National Rice Industry Technical System of China (CARS-01-28), Hunan Provincial Natural Science Foundation of China (2017JJ3161). Hunan Provincial Key Research and Development Program of China (2016NK2190). Scientific Research Foundation of Hunan Provincial Education Bureau (19B250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Peng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Table 1.

CK, L450, L900, L1350, L1800, L2250, L3000, and L3750 indicate 0, 450, 900, 1350, 1800, 2250, 3000, and 3750 kg ha-1 of the cumulatively applied amount of lime (XLS 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Huang, Y., Ji, X. et al. Effects and Mechanism of Continuous Liming on Cadmium Immobilization and Uptake by Rice Grown on Acid Paddy Soils. J Soil Sci Plant Nutr 20, 2316–2328 (2020). https://doi.org/10.1007/s42729-020-00297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-020-00297-9

Keywords

Navigation