Skip to main content
Log in

A constitutive model for lung mechanics and injury applicable to static, dynamic, and shock loading

  • Original Paper
  • Published:
Mechanics of Soft Materials Aims and scope Submit manuscript

Abstract

A continuum model for lung parenchyma is constructed. The model describes the thermomechanical response over a range of loading rates—from static to dynamic to shock waves—and a range of stress states, including isotropic expansion, triaxial extension, simple shear, and plane wave compression. Nonlinear elasticity, viscoelasticity, and damage are included, with the latter associated with changes of biological function as well as mechanical stiffness. A Gram–Schmidt decomposition of the deformation gradient leads to strain attributes that enter the thermodynamic potentials as state variables. A free energy function is designed for loading at low to moderate rates and tensile pressures, whereby the tissue response, with surface tension, is preeminent. An internal energy function is designed for wave propagation analysis, including shock waves, whereby compressibility of the air inside the alveoli is addressed via a composite stiffness based on a closed-cell assumption. The model accurately represents the response to triaxial loading, pressure relaxation, and dynamic torsion with relatively few parameters. Longitudinal wave speeds are reasonable for ranges of internal airway pressure and transpulmonary pressure. Airway pressure strongly affects the response to plane wave compression. Criteria for local injury and damage progression depend on a normalized energy density and its gradient, where the latter is paramount for impact problems involving fast pressure rises. Results suggest that local damage associated with edema is induced at load intensities much lower than those that would cause significant stiffness changes due to rupture, major tearing, or local collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fung, Y. -C.: Biomechanics: Motion, Flow, Stress, and Growth. Springer, New York (1990)

    MATH  Google Scholar 

  2. Fung, Y. -C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  3. Humphrey, J. D.: Continuum biomechanics of soft biological tissues. Proc. R. Soc. Lond. A 459, 3–46 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Freed, A. D.: Soft Solids. Birkhauser, Cham (2016)

    Google Scholar 

  5. Clayton, J. D., Freed, A.D.: Viscoelastic-damage theory based on a QR decomposition of deformation gradient. Technical Report ARL-8840, Army Research Laboratory, Aberdeen Proving Ground, MD (2019)

  6. Clayton, J.D., Banton, R.J., Freed, A.D.: A nonlinear thermoelastic-viscoelastic continuum model of lung mechanics for shock wave analysis. AIP Conference Proceedings, in press (2019)

  7. Clayton, J. D., Freed, A. D.: A constitutive framework for finite viscoelasticity and damage based on the Gram-Schmidt decomposition. Acta Mechanica submitted (2019)

  8. Grimal, Q., Gama, B. A., Naili, S., Watzky, A. l., Gillespie, J. W.: Finite element study of high-speed blunt impact on thorax: linear elastic considerations. International Journal of Impact Engineering 30, 665–683 (2004)

    Google Scholar 

  9. Grimal, Q., Naili, S., Watzky, A.: A high-frequency lung injury mechanism in blunt thoracic impact. J. Biomech. 38, 1247–1254 (2005)

    Google Scholar 

  10. Shen, W., Niu, Y., Mattrey, R. F., Fournier, A., Corbeil, J., Kono, Y., Stuhmiller, J. H.: Development and validation of subject-specific finite element models for blunt trauma study. J. Biomech. Eng. 130, 021022 (2008)

    Google Scholar 

  11. Bowen, I. G., Fletcher, E. R., Richmond, D.R.: Estimate of man’s tolerance to the direct effects of air blast. Technical report, Lovelace Foundation for Medical Education and Research, Albuquerque NM (1968)

  12. Cooper, G. J., Pearce, B. P., Sedman, A. J., Bush, I. S., Oakley, C.W.: Experimental evaluation of a rig to simulate the response of the thorax to blast loading. Journal of Trauma and Acute Care Surgery 40, 38S–41S (1996)

    Google Scholar 

  13. Cooper, G.J., Jonsson, A.: Protection against blast injury. In: Cooper, G.J., Dudley, H.A.F., Gann, D.S., Little, R.A., Maynard, R.L. (eds.) Scientific Foundations of Trauma, pp 258–283. Butterworth Heinemann, Oxford (1997)

  14. Rafaels, K. A., Cameron, R., Panzer, M. B., Salzar, R. S.: Pulmonary injury risk assessment for long-duration blasts: a meta-analysis. Journal of Trauma and Acute Care Surgery 69, 368–374 (2010)

    Google Scholar 

  15. Gibbons, M. M., Dang, X., Adkins, M., Powell, B., Chan, P.: Finite element modeling of blast lung injury in sheep. J. Biomech. Eng. 137, 041002 (2015)

    Google Scholar 

  16. Stitzel, J. D., Gayzik, F. S., Hoth, J. J., Mercier, J., Gage, H. D., Morton, K. A., Duma, S. M., Payne, R. M.: Development of a finite element-based injury metric for pulmonary contusion part I: model development and validation. Stapp Car Crash J. 49, 271–289 (2005)

    Google Scholar 

  17. Stuhmiller, J. H., Chuong, C. J., Phillips, Y. Y., Dodd, K. T.: Computer modeling of thoracic response to blast. Journal of Trauma 28, S132–S139 (1988)

    Google Scholar 

  18. Vlessis, A.A., Trunkey, D.D.: Non-penetrating injury of the thorax. In: Cooper, G.J., Dudley, H.A.F., Gann, D.S., Little, R.A., Maynard, R.L. (eds.) Scientific Foundations of Trauma, pp 127–143. Butterworth Heinemann, Oxford (1997)

  19. Fung, Y. -C.: Stress, deformation, and atelectasis of the lung. Circ. Res. 37, 481–496 (1975)

    Google Scholar 

  20. Fung, Y. -C., Patitucci, P., Tong, P.: Stress and strain in the lung. ASCE Journal of Engineering Mechanics 104, 201–223 (1978)

    Google Scholar 

  21. Vawter, D. L., Fung, Y. -C., West, J. B.: Constitutive equation of lung tissue elasticity. J. Biomech. Eng. 101, 38–45 (1979)

    Google Scholar 

  22. Vawter, D. L.: A finite element model for macroscopic deformation of the lung. J. Biomech. Eng. 102, 1–7 (1980)

    Google Scholar 

  23. Fung, Y. -C.: Elasticity of soft tissues in simple elongation. Am J Physiol 213, 1532–1544 (1967)

    Google Scholar 

  24. Bachofen, H., Hildebrandt, J., Bachofen, M.: Pressure-volume curves of air-and liquid-filled excised lungs-surface tension in situ. J. Appl. Physiol. 29, 422–431 (1970)

    Google Scholar 

  25. Suki, B., Bates, J. H.: A nonlinear viscoelastic model of lung tissue mechanics. J. Appl. Physiol. 71, 826–833 (1991)

    Google Scholar 

  26. Gayzik, F. S., Hoth, J. J., Daly, M., Meredith, J. W., Stitzel, J. D.: A finite element-based injury metric for pulmonary contusion: investigation of candidate metrics through correlation with computed tomography. Stapp Car Crash J. 51, 189–209 (2007)

    Google Scholar 

  27. Gayzik, F. S., Hoth, J. J., Stitzel, J. D.: Finite element–based injury metrics for pulmonary contusion via concurrent model optimization. Biomech. Model. Mechanobiol. 10, 505–520 (2011)

    Google Scholar 

  28. Hallquist, J. O.: LS-DYNA Theory Manual. Livermore Software Technology Corporation (2006)

  29. Cronin, D. S.: Model for pulmonary response resulting from high deformation rate loading. In: Proceedings of the 2011 International Research Council on Biomechanics of Injury (IRCOBI) Conference, pp 181–192 (2011)

  30. Rice, D. A.: Sound speed in pulmonary parenchyma. J. Appl. Physiol. 54, 304–308 (1983)

    Google Scholar 

  31. Butler, J. P., Lehr, J. L., Drazen, J. M.: Longitudinal elastic wave propagation in pulmonary parenchyma. J. Appl. Physiol. 62, 1349–1355 (1987)

    Google Scholar 

  32. Freed, A. D., Einstein, D. R.: An implicit elastic theory for lung parenchyma. Int. J. Eng. Sci. 62, 31–47 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Stamenovic, D.: Micromechanical foundations of pulmonary elasticity. Physiol. Rev. 70, 1117–1134 (1990)

    Google Scholar 

  34. Freed, A. D., Einstein, D. R., Carson, J. P., Jacob, R. E.: Viscoelastic model for lung parenchyma for multi-scale modeling of respiratory system, phase II: Dodecahedral micro-model. Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (US) (2012)

  35. D’yachenko, A. I., Manyuhina, O. V.: Modeling of weak blast wave propagation in the lung. J. Biomech. 39, 2113–2122 (2006)

    Google Scholar 

  36. Regueiro, R. A., Zhang, B., Wozniak, S. L.: Large deformation dynamic three-dimensional coupled finite element analysis of soft biological tissues treated as biphasic porous media. Computer Modeling in Engineering and Sciences (CMES) 98, 1–39 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Fankell, D. P., Regueiro, R. A., Kramer, E. A., Ferguson, V. L., Rentschler, M. E.: A small deformation thermoporomechanics finite element model and its application to arterial tissue fusion. J. Biomech. Eng. 140, 031007 (2018)

    Google Scholar 

  38. Freed, A. D., Zamani, S.: On the use of convected coordinate systems in the mechanics of continuous media derived from a QR factorization of F. Int. J. Eng. Sci. 127, 145–161 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Freed, A. D., Graverend, J. B., Rajagopal, K. R.: A decomposition of Laplace stretch with applications in inelasticity. Acta Mech. 230, 3423–3429 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Freed, A. D., Zamani, S.: Elastic Kelvin-Poisson-Poynting solids described through scalar conjugate stress/strain pairs derived from a QR factorization of F. Journal of the Mechanics and Physics of Solids 129, 278–293 (2019)

    MathSciNet  Google Scholar 

  41. Freed, A. D.: A note on stress/strain conjugate pairs: explicit and implicit theories of thermoelasticity for anisotropic materials. Int. J. Eng. Sci. 120, 155–171 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Srinivasa, A. R.: On the use of the upper triangular (or QR) decomposition for developing constitutive equations for Green-elastic materials. Int. J. Eng. Sci. 60, 1–12 (2012)

    MathSciNet  MATH  Google Scholar 

  43. McLellan, A. G.: The Classical Thermodynamics of Deformable Materials. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  44. Clayton, J. D.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    MATH  Google Scholar 

  45. Holzapfel, G. A., Simo, J. C.: A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int. J. Solids Struct. 33, 3019–3034 (1996)

    MATH  Google Scholar 

  46. Holzapfel, G. A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods Eng. 39, 3903–3926 (1996)

    MATH  Google Scholar 

  47. Simo, J. C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput. Methods Appl. Mech. Eng. 60, 153–173 (1987)

    MATH  Google Scholar 

  48. Balzani, D., Brinkhues, S., Holzapfel, G. A.: Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Methods Appl. Mech. Eng. 213, 139–151 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Krajcinovic, D.: Damage Mechanics. North-Holland, Amsterdam (1996)

    MATH  Google Scholar 

  50. Clayton, J. D., Tonge, A.: A nonlinear anisotropic elastic-inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int J Solids Struct 64–65, 191–207 (2015)

    Google Scholar 

  51. Hoppin, F. G., Lee, G. C., Dawson, S. V.: Properties of lung parenchyma in distortion. J. Appl. Physiol. 39, 742–751 (1975)

    Google Scholar 

  52. Lee, G. C., Frankus, A.: Elasticity properties of lung parenchyma derived from experimental distortion data. Biophys. J. 15, 481–493 (1975)

    Google Scholar 

  53. Lai-Fook, S. J., Wilson, T. A., Hyatt, R. E., Rodarte, J. R.: Elastic constants of inflated lobes of dog lungs. J. Appl. Physiol. 40, 508–513 (1976)

    Google Scholar 

  54. Hajji, M. A., Wilson, T. A., Lai-Fook, S. J.: Improved measurements of shear modulus and pleural membrane tension of the lung. J. Appl. Physiol. 47, 175–181 (1979)

    Google Scholar 

  55. Jahed, M., Lai-Fook, S. J., Bhagat, P. K., Kraman, S. S.: Propagation of stress waves in inflated sheep lungs. J. Appl. Physiol. 66, 2675–2680 (1989)

    Google Scholar 

  56. Jahed, M., Lai-Fook, S. J., Bhagat, P. K.: Effect of vascular volume and edema on wave propagation in canine lungs. J. Appl. Physiol. 68, 2171–2176 (1990)

    Google Scholar 

  57. Jahed, M., Lai-Fook, S. J.: Stress wave velocity measured in intact pig lungs with cross-spectral analysis. J. Appl. Physiol. 76, 565–571 (1994)

    Google Scholar 

  58. Yen, R. T., Fung, Y. C., Ho, H. H., Butterman, G.: Speed of stress wave propagation in lung. J. Appl. Physiol. 61, 701–705 (1986)

    Google Scholar 

  59. Zeng, Y. J., Yager, D., Fung, Y. C.: Measurement of the mechanical properties of the human lung tissue. J. Biomech. Eng. 109, 169–174 (1987)

    Google Scholar 

  60. Lai-Fook, S. J.: The elastic constants of lung parenchyma: the effect of pressure-volume hysteresis on the behavior of blood vessels. J. Biomech. 12, 757–764 (1979)

    Google Scholar 

  61. Denny, E., Schroter, R. C.: A model of non-uniform lung parenchyma distortion. J. Biomech. 39, 652–663 (2006)

    Google Scholar 

  62. Hoppin, F. G., Stothert, J. C., Greaves, I. A., Lai, Y. -L., Hildebrandt, J.: Lung recoil: elastic and rheological properties. In: Handook of Physiology. The Respiratory System. Mechanics of Breathing, pp 195–216. American Physiological Society, Bethesda (1986)

  63. McGee, K. P., Mariappan, Y. K., Hubmayr, R. D., Carter, R. E., Bao, Z., Levin, D. L., Manduca, A., Ehman, R. L.: Magnetic resonance assessment of parenchymal elasticity in normal and edematous, ventilator-injured lung. J. Appl. Physiol. 113, 666–676 (2012)

    Google Scholar 

  64. Carney, D., DiRocco, J., Nieman, G.: Dynamic alveolar mechanics and ventilator-induced lung injury. Crit. Care Med. 33, S122–S128 (2005)

    Google Scholar 

  65. Perlman, C. E., Lederer, D. J., Bhattacharya, J.: Micromechanics of alveolar edema. Am. J. Respir. Cell Mol. Biol. 44, 34–39 (2011)

    Google Scholar 

  66. Ingenito, E. P., Mark, L., Davison, B.: Effects of acute lung injury on dynamic tissue properties. J. Appl. Physiol. 77, 2689–2697 (1994)

    Google Scholar 

  67. Fung, Y. -C., Yen, R. T., Tao, Z. L., Liu, S. Q.: A hypothesis on the mechanism of trauma of lung tissue subjected to impact load. J. Biomech. Eng. 110, 50–56 (1988)

    Google Scholar 

  68. Tao, Z. L., Fung, Y. C.: Lungs under cyclic compression and expansion. J. Biomech. Eng. 109, 160–162 (1987)

    Google Scholar 

  69. Hughes, R., May, A. J., Widdicombe, J. G.: Stress relaxation in rabbits’ lungs. J Physiol 146, 85–97 (1959)

    Google Scholar 

  70. Fredberg, J. J., Stamenovic, D.: On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67, 2408–2419 (1989)

    Google Scholar 

  71. Suki, B., Barabasi, A. L., Lutchen, K. R.: Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J. Appl. Physiol. 76, 2749–2759 (1994)

    Google Scholar 

  72. Navajas, D., Maksym, G. N., Bates, J. H.: Dynamic viscoelastic nonlinearity of lung parenchymal tissue. J. Appl. Physiol. 79, 348–356 (1995)

    Google Scholar 

  73. Dai, Z., Peng, Y., Mansy, H. A., Sandler, R. H., Royston, T. J.: A model of lung parenchyma stress relaxation using fractional viscoelasticity. Medical Engineering and Physics 37, 752–758 (2015)

    Google Scholar 

  74. Sanborn, B., Nie, X., Chen, W., Weerasooriya, T.: High strain rate pure shear and axial compressive response of porcine lung tissue. J. Appl. Mech. 80, 011029 (2013)

    Google Scholar 

  75. Saraf, H., Ramesh, K. T., Lennon, A. M., Merkle, A. C., Roberts, J. C.: Mechanical properties of soft human tissues under dynamic loading. J. Biomech. 40, 1960–1967 (2007)

    Google Scholar 

  76. Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Berlin (2008)

    MATH  Google Scholar 

  77. Clayton, J.D.: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Springer, Cham (2019)

    MATH  Google Scholar 

  78. Clayton, J. D., Knap, J.: A geometrically nonlinear phase field theory of brittle fracture. Int. J. Fract. 189, 139–148 (2014)

    Google Scholar 

  79. Clayton, J. D., Knap, J.: Phase field modeling of coupled fracture and twinning in single crystals and polycrystals. Comput. Methods Appl. Mech. Eng. 312, 447–467 (2016)

    MathSciNet  MATH  Google Scholar 

  80. Clayton, J. D.: Finsler geometry of nonlinear elastic solids with internal structure. J. Geom. Phys. 112, 118–146 (2017)

    MathSciNet  MATH  Google Scholar 

  81. Clayton, J. D.: Generalized finsler geometric continuum physics with applications in fracture and phase transformations. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 68, 9 (2017)

    MathSciNet  MATH  Google Scholar 

  82. Malvern, L. E.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs (1969)

    Google Scholar 

  83. Graff, K. F.: Wave Motion in Elastic Solids. Oxford University Press London, Oxford (1975)

    MATH  Google Scholar 

  84. McLellan, A. G.: Finite strain coordinates and the stability of solid phases. Journal of Physics C: Solid State Physics 9, 4083–4094 (1976)

    Google Scholar 

  85. Thurston, R.N.: Waves in solids. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VI, pp 109–308. Springer, Berlin (1974)

  86. Clayton, J. D., Lloyd, J. T.: Analysis of nonlinear elastic aspects of precursor attenuation in shock-compressed metallic crystals. Journal of Physics Communications 2, 045032 (2018)

    Google Scholar 

  87. Weir, C. E.: Effect of temperature on the volume of leather and collagen in water. J. Res. Natl. Bur. Stand. 41, 279–285 (1948)

    Google Scholar 

  88. Kanagy, J. R.: Specific heats of collagen and leather. J. Res. Natl. Bur. Stand. 55, 191–195 (1955)

    Google Scholar 

  89. Kakivaya, S. R., Hoeve, C. A.: The glass point of elastin. Proc. Natl. Acad. Sci. 72, 3505–3507 (1975)

    Google Scholar 

  90. Lillie, M. A., Gosline, J. M.: Unusual swelling of elastin. Biopolymers: Original Research on Biomolecules 64, 115–126 (2002)

    Google Scholar 

  91. McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N., Carter, W.J.: The equation of state of solids from shock wave studies. In: Kinslow, R. (ed.) High-Velocity Impact Phenomena, pp 294–417. Academic Press, New York (1970)

  92. Clayton, J. D.: Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory. Int. J. Eng. Sci. 79, 1–20 (2014)

    MathSciNet  MATH  Google Scholar 

  93. Yen, R. T., Fung, Y. C., Liu, S. Q.: Trauma of lung due to impact load. J. Biomech. 21, 745–753 (1988)

    Google Scholar 

  94. Clayton, J. D.: Finsler-geometric continuum dynamics and shock compression. Int. J. Fract. 208, 53–78 (2017)

    Google Scholar 

  95. Stuhmiller, J. H., Ho, K., Vander Vorst, M. J., Dodd, K. T., Fitzpatrick, T., Mayorga, M.: A model of blast overpressure injury to the lung. J. Biomech. 29, 227–234 (1996)

    Google Scholar 

  96. Grimal, Q., Watzky, A., Naili, S.: A one-dimensional model for the propagation of transient pressure waves through the lung. J. Biomech. 35, 1081–1089 (2002)

    MATH  Google Scholar 

  97. Tsokos, M., Paulsen, F., Petri, S., Madea, B., Puschel, K., Turk, E. E.: Histologic, immunohistochemical, and ultrastructural findings in human blast lung injury. Am. J. Respir. Crit. Care Med. 168, 549–555 (2003)

    Google Scholar 

Download references

Acknowledgments

J.D.C. acknowledges support of the CCDC Army Research Laboratory. A.D.F. acknowledges support of a Joint Faculty Appointment with the CCDC Army Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Clayton.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clayton, J.D., Freed, A.D. A constitutive model for lung mechanics and injury applicable to static, dynamic, and shock loading. Mech Soft Mater 2, 3 (2020). https://doi.org/10.1007/s42558-020-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42558-020-0018-9

Keywords

Navigation