Skip to main content

Advertisement

Log in

Cavitation Induced Damage in Soft Biomaterials

  • Original Research
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

When cavitating bubbles grow in a soft material followed by a violent collapse under the influence of a far-field pressure, they generate secondary pressure pulses of higher magnitude and potentially induce damage to the near-field material. During the bubble collapse, the surrounding material also experiences a high strain rate and shear deformation. Several experimental and analytical observations have shown that the bubble dynamics are highly dependent on the magnitude of the far-field pressure, the volume fraction of non-condensable gas, and material properties. In the present work, we propose a damage parameter as the efficiency of cavitation damage and perform several numerical simulations varying the factors mentioned above to establish a correlation with the damage efficiency. The efficiency of cavitation damage is defined as the ratio of the energy deposited to the surrounding medium and the energy released by the collapsing bubbles. We consider both isotropic (volumetric) and deviatoric (shear) energy deposition, and in doing so, we can separately identify the intensity of both damage mechanisms. For the numerical simulations, we have integrated the viscoelastic Kelvin–Voigt constitutive model with a commercially available solver. The significant findings of the numerical simulations are (1) bubble collapse becomes more violent with the increase of far-field pressure, (2) collapse pressure and intensity decrease with increasing non-condensable gas content, (3) materials elasticity reduces the collapsing velocity, and eventually, the collapsing pressure, (4) viscosity plays a minor role in the first collapse and becomes significant for the subsequent rebounds and collapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. C.E. Brennen, Cavitation and Bubble Dynamics (Cambridge University Press, Cambridge, 2014).

    MATH  Google Scholar 

  2. A. Andersen, K.A. Mørch, Cavitation nuclei in water exposed to transient pressures. J. Fluid Mech. 771, 424–448 (2015)

    Article  MathSciNet  Google Scholar 

  3. T.G. Leighton, The principles of cavitation. Ultrasound food Process 12, 151–178 (1998)

    Google Scholar 

  4. M.S. Plesset, The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)

    Google Scholar 

  5. M.S. Plesset, A. Prosperetti, Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9(1), 145–185 (1977)

    Article  Google Scholar 

  6. A. Prosperetti, A generalization of the Rayleigh–Plesset equation of bubble dynamics. Phys. Fluids 25(3), 409–410 (1982)

    Article  Google Scholar 

  7. L. Rayleigh, VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(200), 94–98 (1917)

    Article  Google Scholar 

  8. J. Goeller, A. Wardlaw, D. Treichler, J. O’Bruba, G. Weiss, Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury. J. Neurotrauma 29(10), 1970–1981 (2012). https://doi.org/10.1089/neu.2011.2224

    Article  Google Scholar 

  9. A. Nakagawa et al., Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J. Neurotrauma 28(6), 1101–1119 (2011). https://doi.org/10.1089/neu.2010.1442

    Article  Google Scholar 

  10. P.A. Taylor, J.S. Ludwigsen, C.C. Ford, Investigation of blast-induced traumatic brain injury. Brain Inj. 28(7), 879–895 (2014). https://doi.org/10.3109/02699052.2014.888478

    Article  Google Scholar 

  11. L. Zhang, K.H. Yang, A.I. King, Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma 18(1), 21–30 (2001). https://doi.org/10.1089/089771501750055749

    Article  Google Scholar 

  12. L. Zhang, K.H. Yang, A.I. King, A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 126(2), 226–236 (2004). https://doi.org/10.1115/1.1691446

    Article  Google Scholar 

  13. W. Yuan-Ting, A. Adnan, Effect of shock-induced cavitation bubble collapse on the damage in the simulated perineuronal net of the brain. Sci. Rep. (Nat. Publ. Group) 7, 1–9 (2017)

    Google Scholar 

  14. M.I. Khan, F. Hasan, K.A.H. AlMahmud, A. Adnan, Recent computational approaches on mechanical behavior of axonal cytoskeletal components of neuron: a brief review. Eng. Multiscale Sci. (2020). https://doi.org/10.1007/s42493-020-00043-4

    Article  Google Scholar 

  15. M.I. Khan, F. Hasan, K. A. Hasan Al Mahmud, A. Adnan, , Domain focused and residue focused phosphorylation effect on tau protein: a molecular dynamics simulation study. J. Mech. Behav. Biomed. Mater. 113, 104149 (2021). https://doi.org/10.1016/j.jmbbm.2020.104149

    Article  Google Scholar 

  16. J.A. Zimberlin et al., Cavitation rheology for soft materials. Soft Matter 3(6), 763 (2007). https://doi.org/10.1039/b617050a

    Article  Google Scholar 

  17. J.B. Estrada, C. Barajas, D.L. Henann, E. Johnsen, C. Franck, High strain-rate soft material characterization via inertial cavitation. J. Mech. Phys. Solids 112, 291–317 (2018)

    Article  Google Scholar 

  18. W. Kang, A. Adnan, T. O’Shaughnessy, A. Bagchi, Cavitation nucleation in gelatin: experiment and mechanism. Acta Biomater. 67, 295–306 (2018). https://doi.org/10.1016/j.actbio.2017.11.030

    Article  Google Scholar 

  19. C.C. Coussios, R.A. Roy, Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Mech. 40, 395–420 (2008)

    MathSciNet  MATH  Google Scholar 

  20. G.A. Husseini, M.A.D. de la Rosa, E.S. Richardson, D.A. Christensen, W.G. Pitt, The role of cavitation in acoustically activated drug delivery. J. Control. Release 107(2), 253–261 (2005)

    Article  Google Scholar 

  21. S. Mitragotri, Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4(3), 255 (2005)

    Article  Google Scholar 

  22. W.G. Pitt, G.A. Husseini, B.J. Staples, Ultrasonic drug delivery—a general review. Expert Opin. Drug Deliv. 1(1), 37–56 (2004)

    Article  Google Scholar 

  23. C.C. Church, A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter. J. Acoust. Soc. Am. 86(1), 215–227 (1989)

    Article  Google Scholar 

  24. A.J. Coleman, J.E. Saunders, L.A. Crum, M. Dyson, Acoustic cavitation generated by an extracorporeal shockwave lithotripter. Ultrasound Med. Biol. 13(2), 69–76 (1987)

    Article  Google Scholar 

  25. Y.A. Pishchalnikov et al., Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shockwaves. J. Endourol. 17(7), 435–446 (2003)

    Article  Google Scholar 

  26. K.A.H. Al Mahmud, F. Hasan, M.I. Khan, A. Adnan, On the molecular level cavitation in soft gelatin hydrogel. Sci. Rep. 10(1), 9635 (2020). https://doi.org/10.1038/s41598-020-66591-9

    Article  Google Scholar 

  27. P. Lubock, W. Goldsmith, Experimental cavitation studies in a model head-neck system. J. Biomech. 13(12), 1041–1052 (1980)

    Article  Google Scholar 

  28. G.S. Nusholtz, E.B. Wylie, L.G. Glascoe, Internal cavitation in simple head impact model. J. Neurotrauma 12(4), 707–714 (1995)

    Article  Google Scholar 

  29. D.F. Moore, R.A. Radovitzky, L. Shupenko, A. Klinoff, M.S. Jaffee, J.M. Rosen, Blast physics and central nervous system injury (2008).

  30. A. Thiruvengadam (1966) On modeling cavitation damage. Washington DC, (1966) [Online]. https://apps.dtic.mil/sti/pdfs/AD0810327.pdf. Accessed 26 Feb 2021

  31. D.W. Hyde, CONWEP 2.1. 0.8, Conventional Weapons Effects Program. Vicksburg, MS United States Army Corps Eng (2004)

  32. R.K. Gupta, A. Przekwas, Mathematical models of blast-induced TBI: current status, challenges, and prospects. Front. Neurol. 4, 1–21 (2013). https://doi.org/10.3389/fneur.2013.00059

    Article  Google Scholar 

  33. C. Ward, M. Chan, A. Nahum, Intracranial pressure—a brain injury criterion. SAE Trans. 89(4), 3867–3880 (1980)

    Google Scholar 

  34. M.S. Plesset, Shockwaves from cavity collapse. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci 260(1110), 241–244 (1966)

    Google Scholar 

  35. W.-J. Yang, H.-C. Yeh, Theoretical study of bubble dynamics in purely viscous fluids. AIChE J. 12(5), 927–931 (1966). https://doi.org/10.1002/aic.690120517

    Article  Google Scholar 

  36. A. Balasubramanya, S. Kohlstädt, H. Nilsson, Viscoelasticity and constitutive relations. Foamextend 3(2), 1–28 (2016)

    Google Scholar 

  37. M.T. Warnez, E. Johnsen, Numerical modeling of bubble dynamics in viscoelastic media with relaxation. Phys. Fluids 27(6), 63103 (2015). https://doi.org/10.1063/1.4922598

    Article  Google Scholar 

  38. B. Dollet, P. Marmottant, V. Garbin, Bubble dynamics in soft and biological matter. Annu. Rev. Fluid Mech. 51, 331–355 (2019)

    Article  MathSciNet  Google Scholar 

  39. X. Yang, C.C. Church, A model for the dynamics of gas bubbles in soft tissue. J. Acoust. Soc. Am. 118(6), 3595–3606 (2005). https://doi.org/10.1121/1.2118307

    Article  Google Scholar 

  40. R. Gaudron, M.T. Warnez, E. Johnsen, Bubble dynamics in a viscoelastic medium with nonlinear elasticity. J. Fluid Mech. 766, 54–75 (2015). https://doi.org/10.1017/jfm.2015.7

    Article  MathSciNet  Google Scholar 

  41. C.C. Church, Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med. Biol. 28(10), 1349–1364 (2002). https://doi.org/10.1016/S0301-5629(02)00579-3

    Article  Google Scholar 

  42. S. Fujikawa, T. Akamatsu, Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97(3), 481–512 (1980). https://doi.org/10.1017/S0022112080002662

    Article  MATH  Google Scholar 

  43. R. Hicking, M.S. Plesset, R. Hickling, M.S. Plesset, Collapse and rebound of a spherical bubble in water. Phys. Fluids 7(1), 7–14 (1964). https://doi.org/10.1063/1.1711058

    Article  MATH  Google Scholar 

  44. J.B. Keller, M. Miksis, Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68(2), 628–633 (1980)

    Article  Google Scholar 

  45. E. Lauer, X.Y. Hu, S. Hickel, N.A. Adams, Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Comput. Fluids 69, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  46. A. Pearson, E. Cox, J.R. Blake, S.R. Otto, Bubble interactions near a free surface. Eng. Anal. Bound. Elem. 28(4), 295–313 (2004)

    Article  Google Scholar 

  47. T.B. Benjamin, A.T. Ellis, The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 260(1110), 221–240 (1966)

    Google Scholar 

  48. J.R. Blake, D.C. Gibson, Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19(1), 99–123 (1987). https://doi.org/10.1146/annurev.fluid.19.1.99

    Article  Google Scholar 

  49. ANSYS (R) Academic Research Mechanical and CFD, Release 19.1.

  50. ANSYS (R) Academic Research Mechanical and CFD, Release 19.1, Fluent User Guide.

  51. F. Habla, H. Marschall, O. Hinrichsen, L. Dietsche, H. Jasak, J.L. Favero, Numerical simulation of viscoelastic two-phase flows using openFOAM®. Chem. Eng. Sci. 66(22), 5487–5496 (2011). https://doi.org/10.1016/j.ces.2011.06.076

    Article  Google Scholar 

  52. Z.-Y. Zheng, F.-C. Li, J.-C. Yang, Modeling asymmetric flow of viscoelastic fluid in symmetric planar sudden expansion geometry based on user-defined function in FLUENT CFD package. Adv. Mech. Eng. 5, 795937 (2013). https://doi.org/10.1155/2013/795937

    Article  Google Scholar 

  53. F. Belblidia, I.J. Keshtiban, M.F. Webster, Stabilised computations for viscoelastic flows under compressible implementations, in 2nd Annu. Eur. Rheol. Conf., vol. 134(1), (2006), pp. 56–76. https://doi.org/10.1016/j.jnnfm.2005.12.003

  54. P.C. Bollada, T.N. Phillips, On the mathematical modelling of a compressible viscoelastic fluid. Arch. Ration. Mech. Anal. 205(1), 1–26 (2012). https://doi.org/10.1007/s00205-012-0496-5

    Article  MathSciNet  MATH  Google Scholar 

  55. M.S. Darwish, J.R. Whiteman, M.J. Bevis, Numerical modelling of viscoelastic liquids using a finite-volume method. J. Nonnewton. Fluid Mech. 45(3), 311–337 (1992)

    Article  Google Scholar 

  56. M.F. Tomé, M.S.B. de Araujo, M.A. Alves, F.T. Pinho, Numerical simulation of viscoelastic flows using integral constitutive equations: a finite difference approach. J. Comput. Phys. 227(8), 4207–4243 (2008)

    Article  MathSciNet  Google Scholar 

  57. W. Lauterborn, C.D. Ohl, Cavitation bubble dynamics. Ultrason. Sonochem. (1997). https://doi.org/10.1016/S1350-4177(97)00009-6

    Article  Google Scholar 

  58. A. Thiruvengadam, A unified theory of cavitation damage. J Basic Eng 3, 365 (1963)

    Article  Google Scholar 

  59. C.E. Brennen, Cavitation and bubble dynamics. Cambridge University Press (2014)

  60. V.P. Carey, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment (CRC Press, Boca Raton, 2020).

    Book  Google Scholar 

  61. ANSYS (R) Academic Research Mechanical and CFD, Release 19.1, Fluent Theory Guide.

  62. P. Movahed, W. Kreider, A.D. Maxwell, S.B. Hutchens, J.B. Freund, Cavitation-induced damage of soft materials by focused ultrasound bursts: a fracture-based bubble dynamics model. J. Acoust. Soc. Am. 140(2), 1374–1386 (2016). https://doi.org/10.1121/1.4961364

    Article  Google Scholar 

  63. F. Hamaguchi, K. Ando, Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation. Phys. Fluids 27(11), 113103 (2015). https://doi.org/10.1063/1.4935875

    Article  Google Scholar 

  64. S. Catheline, Measurement of viscoelastic properties of homogeneous soft solid using transient elastography: an inverse problem approach. J. Acoust. Soc. Am. 116(6), 3734–3741 (2020)

    Article  Google Scholar 

  65. L. Liu, Y. Fan, W. Li, Viscoelastic shock wave in ballistic gelatin behind soft body armor. J. Mech. Behav. Biomed. Mater. 34, 199–207 (2014). https://doi.org/10.1016/j.jmbbm.2014.02.011

    Article  Google Scholar 

  66. V.T. Nayar, J.D. Weiland, C.S. Nelson, A.M. Hodge, Elastic and viscoelastic characterization of agar. J. Mech. Behav. Biomed. Mater. 7, 60–68 (2012). https://doi.org/10.1016/j.jmbbm.2011.05.027

    Article  Google Scholar 

  67. J. Zhang, C.R. Daubert, E.A. Foegeding, Characterization of polyacrylamide gels as an elastic model for food gels. Rheol. Acta 44(6), 622–630 (2005). https://doi.org/10.1007/s00397-005-0444-5

    Article  Google Scholar 

  68. T.G. Goktekin, Animating Viscoelastic Fluids (University of California, Berkeley, 2011).

    Google Scholar 

  69. D. Chakraborty, J.E. Sader, Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales. Phys. Fluids (2015). https://doi.org/10.1063/1.4919620

    Article  MATH  Google Scholar 

  70. H.S. Kang, R. Willinger, B.M. Diaw, B. Chinn, Validation of a 3D anatomic human head model and replication of head impact in motorcycle accident by finite element modeling. SAE Trans. 106(6), 3849–3858 (1997)

    Google Scholar 

  71. S. Kleiven, Predictors for traumatic brain injuries evaluated through accident reconstructions. SAE Technical Paper, No. 2007-22-0003 (2007)

  72. C. Deck, R. Willinger, Improved head injury criteria based on head FE model. Int. J. Crashworthiness (2008). https://doi.org/10.1080/13588260802411523

    Article  Google Scholar 

  73. A.I. King, K.H. Yang, L. Zhang, W. Hardy, D.C. Viano, Is head injury caused by linear or angular acceleration? in Proceedings of the International Research Conference on the Biomechanics of Impacts (IRCOBI), pp. 1–12 (2003)

  74. H.F. Brinson, L.C. Brinson, Polymer Engineering Science and Viscoelasticity (Springer, Boston, 2008)

    Book  Google Scholar 

  75. E. Johnsen, L. Mancia, Bubble dynamics in soft materials: viscoelastic and thermal effects. J. Phys. Conf. Ser. (2015). https://doi.org/10.1088/1742-6596/656/1/012022

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashfaq Adnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, F., Al Mahmud, K.A.H., Khan, M.I. et al. Cavitation Induced Damage in Soft Biomaterials. Multiscale Sci. Eng. 3, 67–87 (2021). https://doi.org/10.1007/s42493-021-00060-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-021-00060-x

Keywords

Navigation