Skip to main content
Log in

Recent Computational Approaches on Mechanical Behavior of Axonal Cytoskeletal Components of Neuron: A Brief Review

  • Review
  • Published:
Multiscale Science and Engineering Aims and scope Submit manuscript

Abstract

Axonal cytoskeletal components of neuron have been studied and modeled by using different approaches. The axonal cytoskeleton comprises of microtubules (MTs), which mostly control the overall property and behavior of axon. However, MTs contain crosslinks which are MT associated proteins (mainly tau proteins), intermediate filaments (mainly neurofilaments or NFs in case of brain axon), and microfilaments (MFs). Due to the micrometer level length scale of the components, experimental approaches such as microscopy are inconvenient. In this regard, several computational approaches, such as fully atomistic molecular dynamics (MD) simulation, coarse grained (CG) simulation, or finite element analysis (FEA) can be considered reasonable approaches for observing the behavior of the cytoskeletal components and determining their mechanical properties. Among the cytoskeletal components, MTs and MFs are well studied, but the behavior of taus and NFs are not studied comprehensively. Over the last two decades, the computational approaches have been improved manifold to determine and analyze numerous aspects of cytoskeletal components. Due to structurally disordered nature of tau and NF we lack sufficient literature on these components, almost all the structural and behavioral aspects have been analyzed in depth for MT and MF – for which computational studies have played vital role. This study attempts to discuss the current scenario of these computational approaches performed on cytoskeletal components, as well as recent advancements. It attempts to benchmark the current capability of computational approaches to find out properties, behavior, and dynamics of cytoskeletal components, which is required to further advance using similar maneuvers. Importantly, we also pinpoint the possibilities of future studies through which the current limitations in the tau and NF territories can be effectively addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The data and material are available upon reasonable request from the corresponding author.

Code availability

No software application or custom code was used to create the data and material of this manuscript.

References

  1. R. de Rooij, E. Kuhl, Microtubule Polymerization and Cross-Link Dynamics Explain Axonal Stiffness and Damage. Biophys. J. 114(1), 201–212 (2018). https://doi.org/10.1016/j.bpj.2017.11.010

    Article  Google Scholar 

  2. B.R. Brooks et al., CHARMM: The biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (Jul. 2009). https://doi.org/10.1002/jcc.21287

    Article  Google Scholar 

  3. S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94(26), 8897–8909 (1990)

    Google Scholar 

  4. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25(9), 1157–1174 (2004)

    Google Scholar 

  5. W. Damm, A. Frontera, J. Tirado-Rives, W.L. Jorgensen, OPLS all-atom force field for carbohydrates. J. Comput. Chem. 18(16), 1955–1970 (1997)

    Google Scholar 

  6. A.D. Mackerell Jr., M. Feig, C.L. Brooks III, Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25(11), 1400–1415 (2004)

    Google Scholar 

  7. T. Stolarski, Y. Nakasone, and S. Yoshimoto, Engineering analysis with ANSYS software. Butterworth-Heinemann, 2018.

  8. J.Z. Wu, W. Herzog, M. Epstein, Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues. J. Biomech. 31(2), 165–169 (1997)

    Google Scholar 

  9. A. Adnan, S. Qidwai, A. Bagchi, On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules. J. Mech. Behav. Biomed. Mater. 86, 375–389 (2018)

    Google Scholar 

  10. J. Zhang, C. Wang, Molecular structural mechanics model for the mechanical properties of microtubules. Biomech. Model. Mechanobiol. 13(6), 1175–1184 (2014)

    Google Scholar 

  11. D.B. Wells, A. Aksimentiev, Mechanical properties of a complete microtubule revealed through molecular dynamics simulation. Biophys. J. 99(2), 629–637 (2010)

    Google Scholar 

  12. S. Feng, H. Liang, A coarse grain model of microtubules. Theor. Appl. Mech. Lett. 2(1), 14006 (2012)

    Google Scholar 

  13. S. Barreto, C.H. Clausen, C.M. Perrault, D.A. Fletcher, D. Lacroix, A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials 34(26), 6119–6126 (2013)

    Google Scholar 

  14. A. Mitra, D. Sept, Taxol Allosterically Alters the Dynamics of the Tubulin Dimer and Increases the Flexibility of Microtubules. Biophys. J. 95(7), 3252–3258 (2008). https://doi.org/10.1529/biophysj.108.133884

    Article  Google Scholar 

  15. Y. Gebremichael, J.-W. Chu, G.A. Voth, Intrinsic Bending and Structural Rearrangement of Tubulin Dimer: Molecular Dynamics Simulations and Coarse-Grained Analysis. Biophys. J. 95(5), 2487–2499 (2008). https://doi.org/10.1529/biophysj.108.129072

    Article  Google Scholar 

  16. S. Enemark, M.A. Deriu, M. Soncini, A. Redaelli, Mechanical model of the tubulin dimer based on molecular dynamics simulations. J. Biomech. Eng. 130(4), 41008 (2008)

    Google Scholar 

  17. M. SONCINI et al., “MICROTUBULE-KINESIN MECHANICS BY MOLECULAR MODELING,” Biophys. Rev. Lett., vol. 04, no. 01n02, pp. 45–61, Apr. 2009, doi: https://doi.org/10.1142/S1793048009000922.

  18. D. Sept, N.A. Baker, J.A. McCammon, The physical basis of microtubule structure and stability. Protein Sci. 12(10), 2257–2261 (Oct. 2003). https://doi.org/10.1110/ps.03187503

    Article  Google Scholar 

  19. A.S. Zeiger, B.E. Layton, Molecular modeling of the axial and circumferential elastic moduli of tubulin. Biophys. J. 95(8), 3606–3618 (2008)

    Google Scholar 

  20. Y.-T. Wu, A. Adnan, Damage and failure of axonal microtubule under extreme high strain rate: an in-silico molecular dynamics study. Sci. Rep. 8(1), 12260 (2018)

    Google Scholar 

  21. R. I. Dima and H. Joshi, “Probing the origin of tubulin rigidity with molecular simulations,” Proc. Natl. Acad. Sci., vol. 105, no. 41, pp. 15743 LP – 15748, Oct. 2008, doi: https://doi.org/10.1073/pnas.0806113105.

  22. A. Grafmüller, G.A. Voth, Intrinsic Bending of Microtubule Protofilaments. Structure 19(3), 409–417 (2011). https://doi.org/10.1016/j.str.2010.12.020

    Article  Google Scholar 

  23. M.A. Deriu, S. Enemark, M. Soncini, F.M. Montevecchi, A. Redaelli, Tubulin: from atomistic structure to supramolecular mechanical properties. J. Mater. Sci. 42(21), 8864–8872 (2007). https://doi.org/10.1007/s10853-007-1784-6

    Article  Google Scholar 

  24. E.J. Carpenter, J.T. Huzil, R.F. Ludueña, J.A. Tuszynski, Homology modeling of tubulin: influence predictions for microtubule’s biophysical properties. Eur. Biophys. J. 36(1), 35–43 (2006). https://doi.org/10.1007/s00249-006-0088-0

    Article  Google Scholar 

  25. J. W. J. Kerssemakers, E. Laura Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature, vol. 442, no. 7103, pp. 709–712, 2006, doi: https://doi.org/10.1038/nature04928.

  26. J.A. Tuszyński et al., Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Math. Comput. Model. 41(10), 1055–1070 (2005). https://doi.org/10.1016/j.mcm.2005.05.002

    Article  MathSciNet  MATH  Google Scholar 

  27. J.A. Tuszyński, T. Luchko, S. Portet, J.M. Dixon, Anisotropic elastic properties of microtubules. Eur. Phys. J. E 17(1), 29–35 (2005). https://doi.org/10.1140/epje/i2004-10102-5

    Article  Google Scholar 

  28. G. Yoon, J. Kwak, J.I. Kim, S. Na, K. Eom, Mechanical Characterization of Amyloid Fibrils Using Coarse-Grained Normal Mode Analysis. Adv. Funct. Mater. 21(18), 3454–3463 (2011)

    Google Scholar 

  29. P. Zakharov, N. Gudimchuk, V. Voevodin, A. Tikhonravov, F.I. Ataullakhanov, E.L. Grishchuk, Molecular and Mechanical Causes of Microtubule Catastrophe and Aging. Biophys. J. 109(12), 2574–2591 (2015). https://doi.org/10.1016/j.bpj.2015.10.048

    Article  Google Scholar 

  30. P. Xiang, K.M. Liew, Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model. Comput. Methods Appl. Mech. Eng. 223, 123–132 (2012)

    Google Scholar 

  31. A. ADNAN, S. QIDWAI, and A. BAGCHI, “Viscoelastic Response of Microtubule—Tau Proteins Assembly During Axonal Stretch: Combined Atomistic and Continuum Predictions,” in American Society of Composites-30th Technical Conference, 2015.

  32. H. Jiang, L. Jiang, J.D. Posner, B.D. Vogt, Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction. Comput. Mech. 42(4), 607–618 (2008)

    MATH  Google Scholar 

  33. B. Vogt, “Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction,” 2008.

  34. D. Sept, F.C. MacKintosh, Microtubule elasticity: connecting all-atom simulations with continuum mechanics. Phys. Rev. Lett. 104(1), 18101 (2010)

    Google Scholar 

  35. P. Xiang, K.M. Liew, A computational framework for transverse compression of microtubules based on a higher-order Cauchy-Born rule. Comput. Methods Appl. Mech. Eng. 254, 14–30 (2013). https://doi.org/10.1016/j.cma.2012.10.013

    Article  MathSciNet  MATH  Google Scholar 

  36. K.M. Liew, P. Xiang, Y. Sun, A continuum mechanics framework and a constitutive model for predicting the orthotropic elastic properties of microtubules. Compos. Struct. 93(7), 1809–1818 (2011). https://doi.org/10.1016/j.compstruct.2011.01.017

    Article  Google Scholar 

  37. H. Ahmadzadeh, D.H. Smith, V.B. Shenoy, Viscoelasticity of Tau Proteins Leads to Strain Rate-Dependent Breaking of Microtubules during Axonal Stretch Injury: Predictions from a Mathematical Model. Biophys. J. 106(5), 1123–1133 (2014). https://doi.org/10.1016/j.bpj.2014.01.024

    Article  Google Scholar 

  38. H. Ahmadzadeh, D.H. Smith, V.B. Shenoy, Mechanical effects of dynamic binding between tau proteins on microtubules during axonal injury. Biophys. J. 109(11), 2328–2337 (2015)

    Google Scholar 

  39. L. An, Y. Gao, Mechanics behavior of microtubules based on nonlocal anisotropic shell theory. IOP Conf. Ser. Mater. Sci. Eng. 10, 12181 (2010). https://doi.org/10.1088/1757-899x/10/1/012181

    Article  Google Scholar 

  40. H. Sim, D. Sept, Properties of Microtubules with Isotropic and Anisotropic Mechanics. Cell. Mol. Bioeng. 6(4), 361–368 (2013). https://doi.org/10.1007/s12195-013-0302-y

    Article  Google Scholar 

  41. M. Hemmat, B.T. Castle, D.J. Odde, Microtubule dynamics: moving toward a multi-scale approach. Curr. Opin. Cell Biol. 50, 8–13 (2018). https://doi.org/10.1016/j.ceb.2017.12.013

    Article  Google Scholar 

  42. M.A. Deriu et al., Anisotropic elastic network modeling of entire microtubules. Biophys. J. 99(7), 2190–2199 (2010)

    Google Scholar 

  43. C. Lazarus, M. Soheilypour, M.R.K. Mofrad, Torsional behavior of axonal microtubule bundles. Biophys. J. 109(2), 231–239 (2015)

    Google Scholar 

  44. X.-Y. Ji, X.-Q. Feng, Coarse-grained mechanochemical model for simulating the dynamic behavior of microtubules. Phys. Rev. E 84(3), 31933 (2011)

    Google Scholar 

  45. S.J. Peter, M.R.K. Mofrad, Computational modeling of axonal microtubule bundles under tension. Biophys. J. 102(4), 749–757 (2012)

    Google Scholar 

  46. S.S. Setayandeh, A. Lohrasebi, Multi scale modeling of 2450 MHz electric field effects on microtubule mechanical properties. J. Mol. Graph. Model. 70, 122–128 (2016)

    Google Scholar 

  47. K. E. Theisen, N. J. Desai, A. M. Volski, and R. I. Dima, “Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations,” J. Chem. Phys., vol. 139, no. 12, p. 09B629_1, 2013.

  48. K.E. Theisen, A. Zhmurov, M.E. Newberry, V. Barsegov, R.I. Dima, Multiscale modeling of the nanomechanics of microtubule protofilaments. J. Phys. Chem. B 116(29), 8545–8555 (2012)

    Google Scholar 

  49. M. I. Molodtsov, E. L. Grishchuk, A. K. Efremov, J. R. McIntosh, and F. I. Ataullakhanov, “Force production by depolymerizing microtubules: A theoretical study,” Proc. Natl. Acad. Sci. U. S. A., vol. 102, no. 12, pp. 4353 LP – 4358, Mar. 2005, doi: https://doi.org/10.1073/pnas.0501142102.

  50. Y. Ding, Z. Xu, Mechanics of Microtubules from a Coarse-Grained Model. Bionanoscience 1(4), 173–182 (2011). https://doi.org/10.1007/s12668-011-0027-0

    Article  Google Scholar 

  51. V. VanBuren, L. Cassimeris, D.J. Odde, Mechanochemical Model of Microtubule Structure and Self-Assembly Kinetics. Biophys. J. 89(5), 2911–2926 (2005). https://doi.org/10.1529/biophysj.105.060913

    Article  Google Scholar 

  52. M. L. Gardel, J. H. Shin, F. C. MacKintosh, L. Mahadevan, P. Matsudaira, and D. A. Weitz, “Elastic Behavior of Cross-Linked and Bundled Actin Networks,” Science (80-. )., vol. 304, no. 5675, pp. 1301 LP – 1305, May 2004, doi: https://doi.org/10.1126/science.1095087.

  53. L. Mahadevan, T.J. Mitchison, Powerful curves. Nature 435(7044), 895–897 (2005). https://doi.org/10.1038/435895a

    Article  Google Scholar 

  54. Z. Wu, H.-W. Wang, W. Mu, Z. Ouyang, E. Nogales, J. Xing, Simulations of Tubulin Sheet Polymers as Possible Structural Intermediates in Microtubule Assembly. PLoS ONE 4(10), e7291 (Oct. 2009)

    Google Scholar 

  55. S. Kasas, A. Kis, B.M. Riederer, L. Forró, G. Dietler, S. Catsicas, Mechanical Properties of Microtubules Explored Using the Finite Elements Method. ChemPhysChem 5(2), 252–257 (Feb. 2004). https://doi.org/10.1002/cphc.200300799

    Article  Google Scholar 

  56. A. Kis et al., Nanomechanics of Microtubules. Phys. Rev. Lett. 89(24), 248101 (Nov. 2002). https://doi.org/10.1103/PhysRevLett.89.248101

    Article  Google Scholar 

  57. P.J. de Pablo, I.A.T. Schaap, F.C. MacKintosh, C.F. Schmidt, Deformation and Collapse of Microtubules on the Nanometer Scale. Phys. Rev. Lett. 91(9), 98101 (Aug. 2003). https://doi.org/10.1103/PhysRevLett.91.098101

    Article  Google Scholar 

  58. I.A.T. Schaap, C. Carrasco, P.J. de Pablo, F.C. MacKintosh, C.F. Schmidt, Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation. Biophys. J. 91(4), 1521–1531 (2006). https://doi.org/10.1529/biophysj.105.077826

    Article  Google Scholar 

  59. S. Kasas et al., Oscillation modes of microtubules. Biol. Cell 96(9), 697–700 (2004). https://doi.org/10.1016/j.biolcel.2004.09.002

    Article  Google Scholar 

  60. K.M. Liew, P. Xiang, L.W. Zhang, Mechanical properties and characteristics of microtubules: a review. Compos. Struct. 123, 98–108 (2015)

    Google Scholar 

  61. B. Gu, Y.-W. Mai, C.Q. Ru, Mechanics of microtubules modeled as orthotropic elastic shells with transverse shearing. Acta Mech. 207(3–4), 195–209 (2009)

    MATH  Google Scholar 

  62. C.Y. Wang, L.C. Zhang, Circumferential vibration of microtubules with long axial wavelength. J. Biomech. 41(9), 1892–1896 (2008). https://doi.org/10.1016/j.jbiomech.2008.03.029

    Article  MathSciNet  Google Scholar 

  63. X.S. Qian, J.Q. Zhang, C.Q. Ru, Wave propagation in orthotropic microtubules. J. Appl. Phys. 101(8), 84702 (Apr. 2007). https://doi.org/10.1063/1.2717573

    Article  Google Scholar 

  64. C. Li, C.Q. Ru, A. Mioduchowski, Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. Biochem. Biophys. Res. Commun. 351(1), 159–164 (2006). https://doi.org/10.1016/j.bbrc.2006.10.019

    Article  Google Scholar 

  65. Ö. Civalek, Ç. Demir, Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory. Appl. Math. Model. 35(5), 2053–2067 (2011). https://doi.org/10.1016/j.apm.2010.11.004

    Article  MathSciNet  MATH  Google Scholar 

  66. Ç. Demir, Ö. Civalek, Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl. Math. Model. 37(22), 9355–9367 (2013). https://doi.org/10.1016/j.apm.2013.04.050

    Article  MATH  Google Scholar 

  67. H.-S. Shen, Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model. J. Theor. Biol. 264(2), 386–394 (2010). https://doi.org/10.1016/j.jtbi.2010.02.014

    Article  MathSciNet  MATH  Google Scholar 

  68. H.-S. Shen, Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium. Biomech. Model. Mechanobiol. 9(3), 345–357 (2010). https://doi.org/10.1007/s10237-009-0180-3

    Article  Google Scholar 

  69. H.-S. Shen, Nonlocal shear deformable shell model for bending buckling of microtubules embedded in an elastic medium. Phys. Lett. A 374(39), 4030–4039 (2010). https://doi.org/10.1016/j.physleta.2010.08.006

    Article  MATH  Google Scholar 

  70. Y.J. Shi, W.L. Guo, C.Q. Ru, Relevance of Timoshenko-beam model to microtubules of low shear modulus. Phys. E Low-dimensional Syst. Nanostructures 41(2), 213–219 (2008)

    Google Scholar 

  71. T. Li, A mechanics model of microtubule buckling in living cells. J. Biomech. 41(8), 1722–1729 (2008)

    Google Scholar 

  72. Z. Wu, E. Nogales, J. Xing, Comparative studies of microtubule mechanics with two competing models suggest functional roles of alternative tubulin lateral interactions. Biophys. J. 102(12), 2687–2696 (2012)

    Google Scholar 

  73. T. Hawkins, M. Mirigian, M.S. Yasar, J.L. Ross, Mechanics of microtubules. J. Biomech. 43(1), 23–30 (2010)

    Google Scholar 

  74. S. Nishimura et al., Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circ. Res. 98(1), 81–87 (2006)

    Google Scholar 

  75. H. Wada and R. R. Netz, “Non-equilibrium hydrodynamics of a rotating filament,” EPL (Europhysics Lett., vol. 75, no. 4, p. 645, 2006.

  76. C.Y. Wang, C.Q. Ru, A. Mioduchowski, Vibration of microtubules as orthotropic elastic shells. Phys. E Low-dimensional Syst. Nanostructures 35(1), 48–56 (2006)

    Google Scholar 

  77. C.Y. Wang, C.Q. Ru, A. Mioduchowski, Orthotropic elastic shell model for buckling of microtubules. Phys. Rev. E 74(5), 52901 (2006)

    Google Scholar 

  78. Ö. Civalek, C. Demir, A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016)

    MathSciNet  MATH  Google Scholar 

  79. M.A. Deriu, T.C. Bidone, G. Grasso, A. Acquaviva, U. Morbiducci, Multiscale modeling of microtubules and actin filaments. IFAC Proc. 45(2), 1023–1028 (2012)

    Google Scholar 

  80. M. Soheilypour, M. Peyro, S.J. Peter, M.R.K. Mofrad, Buckling behavior of individual and bundled microtubules. Biophys. J. 108(7), 1718–1726 (2015)

    Google Scholar 

  81. A. Shahinnejad, M. Haghpanahi, F. Farmanzad, Finite Element Analysis of Axonal Microtubule Bundle under Tension and Torsion. Procedia Eng. 59, 16–24 (2013). https://doi.org/10.1016/j.proeng.2013.05.088

    Article  Google Scholar 

  82. Y. Gao, J. Wang, H. Gao, Persistence length of microtubules based on a continuum anisotropic shell model. J. Comput. Theor. Nanosci. 7(7), 1227–1237 (2010)

    Google Scholar 

  83. A. Shamloo, F. Manuchehrfar, H. Rafii-Tabar, A viscoelastic model for axonal microtubule rupture. J. Biomech. 48(7), 1241–1247 (2015)

    Google Scholar 

  84. M. Kolarova, F. García-Sierra, A. Bartos, J. Ricny, and D. Ripova, “Structure and pathology of tau protein in Alzheimer disease,” Int. J. Alzheimer’s Dis., vol. 2012, 2012.

  85. K.J. Rosenberg, J.L. Ross, H.E. Feinstein, S.C. Feinstein, J. Israelachvili, Complementary dimerization of microtubule-associated tau protein: Implications for microtubule bundling and tau-mediated pathogenesis. Proc. Natl. Acad. Sci. 105(21), 7445–7450 (2008)

    Google Scholar 

  86. B. Isralewitz, M. Gao, K. Schulten, Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11(2), 224–230 (2001)

    Google Scholar 

  87. Y. Fichou, M. Heyden, G. Zaccai, M. Weik, D.J. Tobias, Molecular dynamics simulations of a powder model of the intrinsically disordered protein Tau. J. Phys. Chem. B 119(39), 12580–12589 (2015)

    Google Scholar 

  88. J. Li et al., An overview of predictors for intrinsically disordered proteins over 2010–2014. Int. J. Mol. Sci. 16(10), 23446–23462 (2015)

    Google Scholar 

  89. L.A. Kelley, S. Mezulis, C.M. Yates, M.N. Wass, M.J.E. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10(6), 845 (2015)

    Google Scholar 

  90. Y. Zhang, I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1), 40 (2008)

    Google Scholar 

  91. Y. Luo et al., Molecular insights into the reversible formation of tau protein fibrils. Chem. Commun. 49(34), 3582–3584 (2013)

    Google Scholar 

  92. S. Wegmann, J. Schöler, C.A. Bippes, E. Mandelkow, D.J. Muller, Competing interactions stabilize pro-and anti-aggregant conformations of human Tau. J. Biol. Chem. 286(23), 20512–20524 (2011)

    Google Scholar 

  93. Y.S. Jho, E.B. Zhulina, M.-W. Kim, P.A. Pincus, Monte carlo simulations of tau proteins: effect of phosphorylation. Biophys. J. 99(8), 2387–2397 (2010)

    Google Scholar 

  94. A.J. Lyons, N.S. Gandhi, R.L. Mancera, Molecular dynamics simulation of the phosphorylation-induced conformational changes of a tau peptide fragment. Proteins Struct. Funct. Bioinforma. 82(9), 1907–1923 (2014)

    Google Scholar 

  95. T.G. Castro, F.-D. Munteanu, A. Cavaco-Paulo, Electrostatics of tau protein by molecular dynamics. Biomolecules 9(3), 116 (2019)

    Google Scholar 

  96. A. Battisti, A. Tenenbaum, Molecular dynamics simulation of intrinsically disordered proteins. Mol. Simul. 38(2), 139–143 (2012)

    Google Scholar 

  97. D. Dułak et al., Filamentous aggregates of tau proteins fulfil standard amyloid criteria provided by the fuzzy oil drop (FOD) model. Int. J. Mol. Sci. 19(10), 2910 (2018)

    Google Scholar 

  98. L. Jayanthi, “Computational Investigation On The Structural Properties Of Neurofilaments And Their Sidearms,” 2014.

  99. R. Beck, J. Deek, and C. R. Safinya, “Structures and interactions in ‘bottlebrush’neurofilaments: the role of charged disordered proteins in forming hydrogel networks.” Portland Press Limited, 2012.

  100. S.P. Adiga, D.W. Brenner, Molecular Basis for Neurofilament Heavy Chain Side Arm Structure Modulation by Phosphorylation. J. Phys. Chem. C 114(12), 5410–5416 (Apr. 2010). https://doi.org/10.1021/jp905671u

    Article  Google Scholar 

  101. L. Jayanthi, W. Stevenson, Y. Kwak, R. Chang, Y. Gebremichael, Conformational properties of interacting neurofilaments: Monte Carlo simulations of cylindrically grafted apposing neurofilament brushes. J. Biol. Phys. 39(3), 343–362 (2013)

    Google Scholar 

  102. W. Stevenson, R. Chang, Y. Gebremichael, Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model. J. Mol. Biol. 405(4), 1101–1118 (2011)

    Google Scholar 

  103. J. Lee, S. Kim, R. Chang, L. Jayanthi, Y. Gebremichael, Effects of molecular model, ionic strength, divalent ions, and hydrophobic interaction on human neurofilament conformation. J. Chem. Phys. 138(1), 01B604 (2013)

    Google Scholar 

  104. R. Chang, Y. Kwak, Y. Gebremichael, Structural properties of neurofilament sidearms: sequence-based modeling of neurofilament architecture. J. Mol. Biol. 391(3), 648–660 (2009)

    Google Scholar 

  105. S. Kumar, X. Yin, B.D. Trapp, J.H. Hoh, M.E. Paulaitis, Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models. Biophys. J. 82(5), 2360–2372 (2002)

    Google Scholar 

  106. M.J. Stevens, J.H. Hoh, Conformational dynamics of neurofilament side-arms. J. Phys. Chem. B 114(27), 8879–8886 (2010)

    Google Scholar 

  107. M.J. Stevens, J.H. Hoh, Interactions between planar grafted neurofilament side-arms. J. Phys. Chem. B 115(23), 7541–7549 (2011)

    Google Scholar 

  108. S. Kim, R. Chang, C. Teunissen, Y. Gebremichael, A. Petzold, Neurofilament stoichiometry simulations during neurodegeneration suggest a remarkable self-sufficient and stable in vivo protein structure. J. Neurol. Sci. 307(1–2), 132–138 (2011)

    Google Scholar 

  109. E.B. Zhulina, F.A.M. Leermakers, Effect of the ionic strength and pH on the equilibrium structure of a neurofilament brush. Biophys. J. 93(5), 1452–1463 (2007)

    Google Scholar 

  110. E.B. Zhulina, F.A.M. Leermakers, A self-consistent field analysis of the neurofilament brush with amino-acid resolution. Biophys. J. 93(5), 1421–1430 (2007)

    Google Scholar 

  111. E.B. Zhulina, F.A.M. Leermakers, The polymer brush model of neurofilament projections: effect of protein composition. Biophys. J. 98(3), 462–469 (2010)

    Google Scholar 

  112. S. Kumar, A. Mansson, Covalent and non-covalent chemical engineering of actin for biotechnological applications. Biotechnol. Adv. 35(7), 867–888 (2017)

    Google Scholar 

  113. T. Splettstoesser, K.C. Holmes, F. Noé, J.C. Smith, Structural modeling and molecular dynamics simulation of the actin filament. Proteins Struct. Funct. Bioinforma. 79(7), 2033–2043 (2011)

    Google Scholar 

  114. J.-W. Chu, G.A. Voth, Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys. J. 90(5), 1572–1582 (2006)

    Google Scholar 

  115. T. Oda, M. Iwasa, T. Aihara, Y. Maéda, A. Narita, The nature of the globular-to fibrous-actin transition. Nature 457(7228), 441 (2009)

    Google Scholar 

  116. R. Dominguez, K.C. Holmes, Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011)

    Google Scholar 

  117. J. Pfaendtner, E. Lyman, T.D. Pollard, G.A. Voth, Structure and dynamics of the actin filament. J. Mol. Biol. 396(2), 252–263 (2010)

    Google Scholar 

  118. J. Pfaendtner, E. M. De La Cruz, and G. A. Voth, “Actin filament remodeling by actin depolymerization factor/cofilin,” Proc. Natl. Acad. Sci., vol. 107, no. 16, pp. 7299 LP – 7304, Apr. 2010, doi: https://doi.org/10.1073/pnas.0911675107.

  119. T. Li, Y. Gu, X.-Q. Feng, P.K.D.V. Yarlagadda, A. Oloyede, Hierarchical multiscale model for biomechanics analysis of microfilament networks. J. Appl. Phys. 113(19), 194701 (2013)

    Google Scholar 

  120. T. Kim, W. Hwang, R.D. Kamm, Computational Analysis of a Cross-linked Actin-like Network. Exp. Mech. 49(1), 91–104 (2009). https://doi.org/10.1007/s11340-007-9091-3

    Article  Google Scholar 

  121. M.M.A.E. Claessens, M. Bathe, E. Frey, A.R. Bausch, Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nat. Mater. 5(9), 748–753 (2006). https://doi.org/10.1038/nmat1718

    Article  Google Scholar 

  122. X. Zheng, K. Diraviyam, D. Sept, Nucleotide Effects on the Structure and Dynamics of Actin. Biophys. J. 93(4), 1277–1283 (2007). https://doi.org/10.1529/biophysj.107.109215

    Article  Google Scholar 

  123. J. Pfaendtner, D. Branduardi, M. Parrinello, T. D. Pollard, and G. A. Voth, “Nucleotide-dependent conformational states of actin,” Proc. Natl. Acad. Sci., vol. 106, no. 31, pp. 12723 LP – 12728, Aug. 2009, doi: https://doi.org/10.1073/pnas.0902092106.

  124. P. Dalhaimer, T.D. Pollard, B.J. Nolen, Nucleotide-Mediated Conformational Changes of Monomeric Actin and Arp3 Studied by Molecular Dynamics Simulations. J. Mol. Biol. 376(1), 166–183 (2008). https://doi.org/10.1016/j.jmb.2007.11.068

    Article  Google Scholar 

  125. J.Y. Lee, T.M. Iverson, R.I. Dima, Molecular Investigations into the Mechanics of Actin in Different Nucleotide States. J. Phys. Chem. B 115(1), 186–195 (Jan. 2011). https://doi.org/10.1021/jp108249g

    Article  Google Scholar 

  126. S. Matsushita, Y. Inoue, T. Adachi, Quantitative analysis of extension–torsion coupling of actin filaments. Biochem. Biophys. Res. Commun. 420(4), 710–713 (2012)

    Google Scholar 

  127. S. Matsushita, T. Adachi, Y. Inoue, M. Hojo, M. Sokabe, Evaluation of extensional and torsional stiffness of single actin filaments by molecular dynamics analysis. J. Biomech. 43(16), 3162–3167 (2010)

    Google Scholar 

  128. J.I. Kim, J. Kwon, I. Baek, S. Na, Steered molecular dynamics analysis of the role of cofilin in increasing the flexibility of actin filaments. Biophys. Chem. 218, 27–35 (2016). https://doi.org/10.1016/j.bpc.2016.08.002

    Article  Google Scholar 

  129. J. Jeon, N.R. Alexander, A.M. Weaver, P.T. Cummings, Protrusion of a Virtual Model Lamellipodium by Actin Polymerization: A Coarse-Grained Langevin Dynamics Model. J. Stat. Phys. 133(1), 79 (2008). https://doi.org/10.1007/s10955-008-9600-5

    Article  MathSciNet  MATH  Google Scholar 

  130. D. Ming, Y. Kong, Y. Wu, J. Ma, Simulation of F-Actin Filaments of Several Microns. Biophys. J. 85(1), 27–35 (2003). https://doi.org/10.1016/S0006-3495(03)74451-8

    Article  Google Scholar 

  131. M.G. Saunders, G.A. Voth, Comparison between Actin Filament Models: Coarse-Graining Reveals Essential Differences. Structure 20(4), 641–653 (2012). https://doi.org/10.1016/j.str.2012.02.008

    Article  Google Scholar 

  132. M.A. Deriu et al., Multiscale modeling of cellular actin filaments: From atomistic molecular to coarse-grained dynamics. Proteins Struct. Funct. Bioinforma. 80(6), 1598–1609 (2012)

    Google Scholar 

  133. J. Fan, M.G. Saunders, G.A. Voth, Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments. Biophys. J. 103(6), 1334–1342 (2012)

    Google Scholar 

  134. O.N. Yogurtcu, J.S. Kim, S.X. Sun, A mechanochemical model of actin filaments. Biophys. J. 103(4), 719–727 (2012)

    Google Scholar 

  135. J.-W. Chu, G.A. Voth, Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. Proc. Natl. Acad. Sci. 102(37), 13111–13116 (2005)

    Google Scholar 

  136. G.A. Holzapfel, M.J. Unterberger, R.W. Ogden, An affine continuum mechanical model for cross-linked F-actin networks with compliant linker proteins. J. Mech. Behav. Biomed. Mater. 38, 78–90 (2014). https://doi.org/10.1016/j.jmbbm.2014.05.014

    Article  Google Scholar 

  137. M.J. Unterberger, K.M. Schmoller, A.R. Bausch, G.A. Holzapfel, A new approach to model cross-linked actin networks: multi-scale continuum formulation and computational analysis. J. Mech. Behav. Biomed. Mater. 22, 95–114 (2013)

    Google Scholar 

  138. T. Li, “Cross-scale biophysics modelling of F-actin cytoskeleton in cell.” Queensland University of Technology, 2015.

  139. M.J. Unterberger, K.M. Schmoller, C. Wurm, A.R. Bausch, G.A. Holzapfel, Viscoelasticity of cross-linked actin networks: Experimental tests, mechanical modeling and finite-element analysis. Acta Biomater. 9(7), 7343–7353 (2013). https://doi.org/10.1016/j.actbio.2013.03.008

    Article  Google Scholar 

  140. S. Suresh, Biomechanics and biophysics of cancer cells. Acta Mater. 55(12), 3989–4014 (2007)

    Google Scholar 

  141. F. Gittes, B. Mickey, J. Nettleton, J. Howard, Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120(4), 923–934 (1993)

    Google Scholar 

  142. N.Y. Yao, C.P. Broedersz, Y.-C. Lin, K.E. Kasza, F.C. MacKintosh, D.A. Weitz, Elasticity in ionically cross-linked neurofilament networks. Biophys. J. 98(10), 2147–2153 (2010)

    Google Scholar 

  143. J.F. Leterrier, J. Käs, J. Hartwig, R. Vegners, P.A. Janmey, Mechanical effects of neurofilament cross-bridges modulation by phosphorylation, lipids, and interactions with f-actin. J. Biol. Chem. 271(26), 15687–15694 (1996)

    Google Scholar 

  144. O.I. Wagner, S. Rammensee, N. Korde, Q. Wen, J.-F. Leterrier, P.A. Janmey, Softness, strength and self-repair in intermediate filament networks. Exp. Cell Res. 313(10), 2228–2235 (2007)

    Google Scholar 

  145. J.I. Kim, J. Kwon, I. Baek, H.S. Park, S. Na, Cofilin reduces the mechanical properties of actin filaments: approach with coarse-grained methods. Phys. Chem. Chem. Phys. 17(12), 8148–8158 (2015). https://doi.org/10.1039/C4CP06100D

    Article  Google Scholar 

  146. A. Battisti, G. Ciasca, A. Grottesi, A. Bianconi, A. Tenenbaum, Temporary secondary structures in tau, an intrinsically disordered protein. Mol. Simul. 38(7), 525–533 (2012)

    Google Scholar 

Download references

Acknowledgements and Funding

This work has been funded by the Computational Cellular Biology of Blast (C2B2) program through the Office of Naval Research (ONR) (Award # N00014-18–1-2082- Dr. Timothy Bentley, Program Manager).

Author information

Authors and Affiliations

Authors

Contributions

M.I.K. collected and interpreted the literature reviews. A.A. contributed in revising the manuscript. F.H. and K.A.M. contributed in reviewing the manuscript.

Corresponding author

Correspondence to Ashfaq Adnan.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Hasan, F., Mahmud, K.A.H.A. et al. Recent Computational Approaches on Mechanical Behavior of Axonal Cytoskeletal Components of Neuron: A Brief Review. Multiscale Sci. Eng. 2, 199–213 (2020). https://doi.org/10.1007/s42493-020-00043-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42493-020-00043-4

Keywords

Navigation