Skip to main content
Log in

Exact Frequencies for Free Vibration of Exponential and Polynomial AFG Beams with Lumped End Masses and Elastic Supports

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this paper, free vibration of polynomial and exponential axially functionally graded (AFG) beam with lumped end masses and elastic supports is studied within the Euler–Bernoulli beam theory. The axial eccentricity and rotatory inertia of the end lumped masses are considered. Also, a new equation is proposed for the equivalence of the exponential AFG beams with the polynomial AFG beams.

Methods

Both the geometrical and material properties of the beam are graded along the AFG beam axis according to the polynomial (P-AFG) and exponential (E-AFG) functions. An analytical approach to derive the exact characteristic equations of two types of AFG beams with end lumped masses and elastic supports is presented. Accordingly, through numerical solving of the characteristic equations, the exact natural frequencies of AFG beams with arbitrary boundary conditions are obtained.

Results and Conclusion

The effects of end lumped mass parameters, i.e., end mass ratio, rotatory inertia ratio, axial eccentricity ratio, the AFG parameters, and the end support parameters on the first three natural frequencies of several P-AFG beams and their equivalent E-AFG beams are investigated. Results show the mentioned parameters play an important role in determining the natural frequencies for the AFG beams. Moreover, the present results can use as a benchmark for other numerical solutions and be served for purposeful design vibrating a wide range of non-uniform and composite beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bambaeechee M (2019) Free vibration of AFG beams with elastic end restraints. Steel Compos Struct 33:403–432. https://doi.org/10.12989/scs.2019.33.3.403

    Article  Google Scholar 

  2. Singh KV, Li G (2009) Buckling of functionally graded and elastically restrained non-uniform columns. Compos Part B Eng 40:393–403. https://doi.org/10.1016/j.compositesb.2009.03.001

    Article  Google Scholar 

  3. Banerjee JR (2001) Explicit analytical expressions for frequency equation and mode shapes of composite beams. Int J Solids Struct 38:2415–2426. https://doi.org/10.1016/S0020-7683(00)00100-1

    Article  MATH  Google Scholar 

  4. Wu L, Wang Q, Elishakoff I (2005) Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode. J Sound Vib 284:1190–1202. https://doi.org/10.1016/j.jsv.2004.08.038

    Article  Google Scholar 

  5. Singh KV, Li G, Pang S-S (2006) Free vibration and physical parameter identification of non-uniform composite beams. Compos Struct 74:37–50. https://doi.org/10.1016/j.compstruct.2005.03.015

    Article  Google Scholar 

  6. Aydogdu M, Taskin V (2007) Free vibration analysis of functionally graded beams with simply supported edges. Mater Des 28:1651–1656. https://doi.org/10.1016/j.matdes.2006.02.007

    Article  Google Scholar 

  7. Huang Y, Li X-F (2010) A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J Sound Vib 329:2291–2303. https://doi.org/10.1016/j.jsv.2009.12.029

    Article  Google Scholar 

  8. Shahba A, Attarnejad R, Marvi MT, Hajilar S (2011) Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Compos Part B Eng 42:801–808. https://doi.org/10.1016/j.compositesb.2011.01.017

    Article  Google Scholar 

  9. Shahba A, Attarnejad R, Hajilar S (2013) A mechanical-based solution for axially functionally graded tapered Euler–Bernoulli beams. Mech Adv Mater Struct 20:696–707. https://doi.org/10.1080/15376494.2011.640971

    Article  Google Scholar 

  10. Wang D (2012) Frequency sensitivity analysis for beams carrying lumped masses with translational and rotary inertias. Int J Mech Sci 65:192–202. https://doi.org/10.1016/j.ijmecsci.2012.10.002

    Article  Google Scholar 

  11. Li X-F, Kang Y-A, Wu J-X (2013) Exact frequency equations of free vibration of exponentially functionally graded beams. Appl Acoust 74:413–420. https://doi.org/10.1016/j.apacoust.2012.08.003

    Article  Google Scholar 

  12. Li XF (2013) Free vibration of axially loaded shear beams carrying elastically restrained lumped-tip masses via asymptotic Timoshenko beam theory. J Eng Mech 139:418–428. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000403

    Article  Google Scholar 

  13. Zhang H, Kang YA, Li X-F (2013) Stability and vibration analysis of axially-loaded shear beam-columns carrying elastically restrained mass. Appl Math Model 37:8237–8250. https://doi.org/10.1016/j.apm.2013.03.050

    Article  MathSciNet  MATH  Google Scholar 

  14. Tang A-Y, Wu J-X, Li X-F, Lee KY (2014) Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int J Mech Sci 89:1–11. https://doi.org/10.1016/j.ijmecsci.2014.08.017

    Article  Google Scholar 

  15. Su H, Banerjee JR (2015) Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Comput Struct 147:107–116. https://doi.org/10.1016/j.compstruc.2014.10.001

    Article  Google Scholar 

  16. Yuan J, Pao Y-H, Chen W (2016) Exact solutions for free vibrations of axially inhomogeneous Timoshenko beams with variable cross section. Acta Mech 227:2625–2643. https://doi.org/10.1007/s00707-016-1658-6

    Article  MathSciNet  MATH  Google Scholar 

  17. Calim FF (2016) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos Part B Eng 103:98–112. https://doi.org/10.1016/j.compositesb.2016.08.008

    Article  Google Scholar 

  18. Rezaiee-Pajand M, Hozhabrossadati SM (2016) Analytical and numerical method for free vibration of double-axially functionally graded beams. Compos Struct 152:488–498. https://doi.org/10.1016/j.compstruct.2016.05.003

    Article  Google Scholar 

  19. Nikolić A (2017) Free vibration analysis of a non-uniform axially functionally graded cantilever beam with a tip body. Arch Appl Mech 87:1227–1241. https://doi.org/10.1007/s00419-017-1243-z

    Article  Google Scholar 

  20. Lee JW, Lee JY (2017) Free vibration analysis of functionally graded Bernoulli–Euler beams using an exact transfer matrix expression. Int J Mech Sci 122:1–17. https://doi.org/10.1016/j.ijmecsci.2017.01.011

    Article  Google Scholar 

  21. Šalinić S, Obradović A, Tomović A (2018) Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams. Compos Part B Eng 150:135–143. https://doi.org/10.1016/j.compositesb.2018.05.060

    Article  Google Scholar 

  22. Keshmiri A, Wu N, Wang Q (2018) Vibration analysis of non-uniform tapered beams with nonlinear FGM properties. J Mech Sci Technol 32:5325–5337. https://doi.org/10.1007/s12206-018-1031-x

    Article  Google Scholar 

  23. Sınır S, Çevik M, Sınır BG (2018) Nonlinear free and forced vibration analyses of axially functionally graded Euler–Bernoulli beams with non-uniform cross-section. Compos Part B Eng 148:123–131. https://doi.org/10.1016/j.compositesb.2018.04.061

    Article  Google Scholar 

  24. Mahmoud MA (2019) Natural frequency of axially functionally graded, tapered cantilever beams with tip masses. Eng Struct 187:34–42. https://doi.org/10.1016/j.engstruct.2019.02.043

    Article  Google Scholar 

  25. Sun D-L, Li X-F (2019) Initial value method for free vibration of axially loaded functionally graded Timoshenko beams with nonuniform cross section. Mech Based Des Struct Mach 47:102–120. https://doi.org/10.1080/15397734.2018.1526690

    Article  Google Scholar 

  26. Chen Y, Song Z, Li F (2020) Generating mechanism of mode localization for the beams and its application in the passive vibration control. J Sound Vib 485:115531. https://doi.org/10.1016/j.jsv.2020.115531

    Article  Google Scholar 

  27. Chen W-R, Chang H (2021) Vibration analysis of bidirectional functionally graded Timoshenko beams using Chebyshev collocation method. Int J Struct Stab Dyn 21:2150009. https://doi.org/10.1142/S0219455421500097

    Article  MathSciNet  Google Scholar 

  28. Li Z, Xu Y, Huang D (2021) Analytical solution for vibration of functionally graded beams with variable cross-sections resting on Pasternak elastic foundations. Int J Mech Sci 191:106084. https://doi.org/10.1016/j.ijmecsci.2020.106084

    Article  Google Scholar 

  29. Sahu RP, Sutar MK, Pattnaik S (2022) A generalized finite element approach to the free vibration analysis of non-uniform axially functionally graded beam. Sci Iran 29:556–571. https://doi.org/10.24200/sci.2021.57274.5151

    Article  Google Scholar 

  30. Liu X, Chang L, Banerjee JR, Dan H-C (2022) Closed-form dynamic stiffness formulation for exact modal analysis of tapered and functionally graded beams and their assemblies. Int J Mech Sci 214:106887. https://doi.org/10.1016/j.ijmecsci.2021.106887

    Article  Google Scholar 

  31. Özdemir Ö (2022) Vibration and buckling analyses of rotating axially functionally graded nonuniform beams. J Vib Eng Technol. https://doi.org/10.1007/s42417-022-00453-8

    Article  Google Scholar 

  32. Bambaeechee M (2022) Free transverse vibration of general power-law NAFG beams with tip masses. J Vib Eng Technol. https://doi.org/10.1007/s42417-022-00519-7

    Article  Google Scholar 

  33. Özmen U, Özhan BB (2022) Computational modeling of functionally graded beams: a novel approach. J Vib Eng Technol. https://doi.org/10.1007/s42417-022-00515-x

    Article  Google Scholar 

  34. Gupta B, Sharma P, Rathore SK (2022) A new numerical modeling of an axially functionally graded piezoelectric beam. J Vib Eng Technol. https://doi.org/10.1007/s42417-022-00550-8

    Article  Google Scholar 

  35. Akgöz B, Civalek Ö (2013) Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322. https://doi.org/10.1016/j.compstruct.2012.11.020

    Article  Google Scholar 

  36. Zeighampour H, Tadi Beni Y (2015) Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl Math Model 39:5354–5369. https://doi.org/10.1016/j.apm.2015.01.015

    Article  MathSciNet  MATH  Google Scholar 

  37. Kiani K (2016) Thermo-elasto-dynamic analysis of axially functionally graded non-uniform nanobeams with surface energy. Int J Eng Sci 106:57–76. https://doi.org/10.1016/j.ijengsci.2016.05.004

    Article  MathSciNet  MATH  Google Scholar 

  38. Shafiei N, Kazemi M, Ghadiri M (2016) Nonlinear vibration of axially functionally graded tapered microbeams. Int J Eng Sci 102:12–26. https://doi.org/10.1016/j.ijengsci.2016.02.007

    Article  MathSciNet  MATH  Google Scholar 

  39. Shafiei N, Kazemi M, Safi M, Ghadiri M (2016) Nonlinear vibration of axially functionally graded non-uniform nanobeams. Int J Eng Sci 106:77–94. https://doi.org/10.1016/j.ijengsci.2016.05.009

    Article  Google Scholar 

  40. Şimşek M (2016) Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int J Eng Sci 105:12–27. https://doi.org/10.1016/j.ijengsci.2016.04.013

    Article  MathSciNet  MATH  Google Scholar 

  41. Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2017) Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams. Int J Eng Sci 120:51–62. https://doi.org/10.1016/j.ijengsci.2017.03.010

    Article  MathSciNet  MATH  Google Scholar 

  42. Ghayesh MH (2018) Mechanics of tapered AFG shear-deformable microbeams. Microsyst Technol 24:1743–1754. https://doi.org/10.1007/s00542-018-3764-y

    Article  MathSciNet  Google Scholar 

  43. Ghayesh MH (2019) Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci 135:75–85. https://doi.org/10.1016/j.ijengsci.2018.10.005

    Article  MathSciNet  MATH  Google Scholar 

  44. Ghayesh MH, Farajpour A (2019) A review on the mechanics of functionally graded nanoscale and microscale structures. Int J Eng Sci 137:8–36. https://doi.org/10.1016/j.ijengsci.2018.12.001

    Article  MathSciNet  MATH  Google Scholar 

  45. Zheng S, Chen D, Wang H (2019) Size dependent nonlinear free vibration of axially functionally graded tapered microbeams using finite element method. Thin Walled Struct 139:46–52. https://doi.org/10.1016/j.tws.2019.02.033

    Article  Google Scholar 

  46. Li H-C, Ke L-L (2021) Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid. Thin Walled Struct 161:107432. https://doi.org/10.1016/j.tws.2020.107432

    Article  Google Scholar 

  47. Abouelregal AE, Mohammed WW, Mohammad-Sedighi H (2021) Vibration analysis of functionally graded microbeam under initial stress via a generalized thermoelastic model with dual-phase lags. Arch Appl Mech 91:2127–2142. https://doi.org/10.1007/s00419-020-01873-2

    Article  Google Scholar 

  48. Mehdipour I, Barari A, Domairry G (2011) Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Comput Mater Sci 50:1830–1833. https://doi.org/10.1016/j.commatsci.2011.01.025

    Article  Google Scholar 

  49. Rao SS (2019) Vibration of Continuous Systems. Wiley, Hoboken

    Book  Google Scholar 

  50. Wang CY, Wang CM (2012) Exact vibration solution for exponentially tapered cantilever with tip mass. J Vib Acoust 134:041012-1–041012-4. https://doi.org/10.1115/1.4005835

    Article  Google Scholar 

  51. Wang CY (2013) Vibration of a tapered cantilever of constant thickness and linearly tapered width. Arch Appl Mech 83:171–176. https://doi.org/10.1007/s00419-012-0637-1

    Article  MATH  Google Scholar 

  52. Wang CY, Wang CM (2013) Structural vibration: exact solutions for strings, membranes, beams, and plates. CRC Press, Boca Raton

    Google Scholar 

  53. Lai H-Y, Chen C-K, Hsu J-C (2008) Free vibration of non-uniform Euler–Bernoulli beams by the Adomian modified decomposition method. CMES Comput Model Eng Sci 34:87–115. https://doi.org/10.3970/cmes.2008.034.087

    Article  MathSciNet  MATH  Google Scholar 

  54. Rezaiee-Pajand M, Shahabian F, Bambaeechee M (2015) Buckling analysis of semi-rigid gabled frames. Struct Eng Mech 55:605–638. https://doi.org/10.12989/sem.2015.55.3.605

    Article  Google Scholar 

  55. Hsu CP, Hung CF, Liao JY. A Chebyshev spectral method with null space approach for boundary-value problems of Euler-Bernoulli beam. https://www.hindawi.com/journals/sv/2018/2487697/

  56. Wu J-S, Chen C-T (2005) An exact solution for the natural frequencies and mode shapes of an immersed elastically restrained wedge beam carrying an eccentric tip mass with mass moment of inertia. J Sound Vib 286:549–568. https://doi.org/10.1016/j.jsv.2004.10.008

    Article  Google Scholar 

  57. Auciello NM (1996) Transverse vibrations of a linearly tapered cantilever beam with tip mass of rotary inertia and eccentricity. J Sound Vib 194:25–34. https://doi.org/10.1006/jsvi.1996.0341

    Article  Google Scholar 

  58. Nikolić A, Šalinić S (2017) A rigid multibody method for free vibration analysis of beams with variable axial parameters. J Vib Control 23:131–146. https://doi.org/10.1177/1077546315575818

    Article  MathSciNet  Google Scholar 

  59. Hozhabrossadati SM (2015) Exact solution for free vibration of elastically restrained cantilever non-uniform beams joined by a mass-spring system at the free end. IES J Part Civ Struct Eng 8:232–239. https://doi.org/10.1080/19373260.2015.1054957

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Bambaeechee.

Ethics declarations

Conflict of interest

The author declares no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The elements of matrix F which are used in Eq. (20) for the P-AFG beam are as follows:

$$\begin{aligned} F_{11} & = - \mu (1 - R_{0} )\left( {1 + \alpha_{0} \gamma_{0} \mu^{2} } \right)J_{{n_{\mathrm{p}} }} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right) \\ & \quad + \left[ {R_{0} + c_{\mathrm{p}} (n_{\mathrm{p}} + 1)(1 - R_{0} ) - \alpha_{0} \mu^{4} (\beta_{0}^{2} + \gamma_{0}^{2} )(1 - R_{0} )} \right]J_{{n_{\mathrm{p}} + 1}} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right), \\ \end{aligned}$$
(21)
$$\begin{aligned} F_{12} & = - \mu (1 - R_{0} )\left( {1 + \alpha_{0} \gamma_{0} \mu^{2} } \right)Y_{{n_{\mathrm{p}} }} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right) \\ & \quad + \left[ {R_{0} + c_{\mathrm{p}} (n_{\mathrm{p}} + 1)(1 - R_{0} ) - \alpha_{0} \mu^{4} (\beta_{0}^{2} + \gamma_{0}^{2} )(1 - R_{0} )} \right]Y_{{n_{\mathrm{p}} + 1}} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right), \\ \end{aligned}$$
(22)
$$\begin{aligned} F_{13} & = \mu (1 - R_{0} )\left( {1 - \alpha_{0} \gamma_{0} \mu^{2} } \right)I_{{n_{\mathrm{p}} }} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right) \\ & \quad - \left[ {R_{0} + c\mathrm{p}(n_{\mathrm{p}} + 1)(1 - R_{0} ) - \alpha_{0} \mu^{4} (\beta_{0}^{2} + \gamma_{0}^{2} )(1 - R_{0} )} \right]I_{{n_{\mathrm{p}} + 1}} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right), \\ \end{aligned}$$
(23)
$$\begin{aligned} F_{14} & = \mu (1 - R_{0} )\left( {1 - \alpha_{0} \gamma_{0} \mu^{2} } \right)K_{{n_{\mathrm{p}} }} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right) \\ & \quad + \left[ {R_{0} + c_{\mathrm{p}} (n_{\mathrm{p}} + 1)(1 - R_{0} ) - \alpha_{0} \mu^{4} (\beta_{0}^{2} + \gamma_{0}^{2} )(1 - R_{0} )} \right]K_{{n_{\mathrm{p}} + 1}} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right), \\ \end{aligned}$$
(24)
$$F_{21} = \left[ {T_{0} - \alpha_{0} \mu^{4} (1 - T_{0} )} \right]J_{{n_{\mathrm{p}} }} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right) + \mu^{3} (1 - T_{0} )\left( {1 - \alpha_{0} \gamma_{0} \mu^{2} } \right)J_{{n_{\mathrm{p}} + 1}} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right),$$
(25)
$$F_{22} = \left[ {T_{0} - \alpha_{0} \mu^{4} (1 - T_{0} )} \right]Y_{{n_{\mathrm{p}} }} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right) + \mu^{3} (1 - T_{0} )\left( {1 - \alpha_{0} \gamma_{0} \mu^{2} } \right)Y_{{n_{\mathrm{p}} + 1}} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right),$$
(26)
$$F_{23} = \left[ {T_{0} - \alpha_{0} \mu^{4} (1 - T_{0} )} \right]I_{{n_{\mathrm{p}} }} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right) + \mu^{3} (1 - T_{0} )\left( {1 + \alpha_{0} \gamma_{0} \mu^{2} } \right)I_{{n_{\mathrm{p}} + 1}} \left( {\frac{2\mu }{{c_{\mathrm{p}} }}} \right),$$
(27)
$$F_{24} = \left[ {T_{0} - \alpha_{0} \mu^{4} (1 - T_{0} )} \right]K_{{n_{p} }} \left( {\frac{2\mu }{{c_{p} }}} \right) - \mu^{3} (1 - T_{0} )\left( {1 + \alpha_{0} \gamma_{0} \mu^{2} } \right)K_{{n_{p} + 1}} \left( {\frac{2\mu }{{c_{p} }}} \right),$$
(28)
$$\begin{aligned} F_{31} & = - \mu \sqrt {1 + c_{\mathrm{p}} } (1 - R_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} + \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]J_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \\ & \quad + \left[ { - R_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + c_{\mathrm{p}} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} (n_{\mathrm{p}} + 1)(1 - R_{L} ) + \alpha_{{L_{\mathrm{p}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )(1 - R_{L} )} \right]J_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right), \\ \end{aligned}$$
(29)
$$\begin{aligned} F_{32} & = - \mu \sqrt {1 + c_{\mathrm{p}} } (1 - R_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} + \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]Y_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \hfill \\ &\quad + \left[ { - R_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + c_{\mathrm{p}} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} (n{}_{\mathrm{p}} + 1)(1 - R_{L} ) + \alpha_{{L_{\mathrm{p}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )(1 - R_{L} )} \right]Y_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right), \hfill \\ \end{aligned}$$
(30)
$$\begin{aligned} F_{33} & = \mu \sqrt {1 + c_{\mathrm{p}} } (1 - R_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} - \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]I_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \hfill \\ & \quad - \left[ { - R_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + c_{\mathrm{p}} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} (n_{\mathrm{p}} + 1)(1 - R_{L} ) + \alpha_{{L_{\mathrm{p}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )(1 - R_{L} )} \right]I_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right), \hfill \\ \end{aligned}$$
(31)
$$\begin{aligned} F_{34} & = \mu \sqrt {1 + c_{\mathrm{p}} } (1 - R_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} - \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]K_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \hfill \\ & \quad + \left[ { - R_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + c_{\mathrm{p}} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} (n_{\mathrm{p}} + 1)(1 - R_{L} ) + \alpha_{{L_{\mathrm{p}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )(1 - R_{L} )} \right]K_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right), \hfill \\ \end{aligned}$$
(32)
$$\begin{aligned} F_{41} & = \sqrt {1 + c_{\mathrm{p}} } \left[ { - T_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + \alpha_{{L_{\mathrm{p}} }} (1 - T_{L} )\mu^{4} } \right]J_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \hfill \\ & \quad + \mu^{3} (1 - T_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} - \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]J_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right), \hfill \\ \end{aligned}$$
(33)
$$\begin{aligned} F_{42} & = \sqrt {1 + c_{\mathrm{p}} } \left[ { - T_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + \alpha_{{L_{\mathrm{p}} }} \mu^{4} (1 - T_{L} )} \right]Y_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \hfill \\ & \quad + \mu^{3} (1 - T_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} - \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]Y_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right), \hfill \\ \end{aligned}$$
(34)
$$\begin{aligned} F_{43} & = \sqrt {1 + c_{\mathrm{p}} } \left[ { - T_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + \alpha_{{L_{\mathrm{p}} }} \mu^{4} (1 - T_{L} )} \right]I_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \hfill \\ & \quad + \mu^{3} (1 - T_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} + \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]I_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right), \hfill \\ \end{aligned}$$
(35)
$$\begin{aligned} F_{44} & = \sqrt {1 + c_{\mathrm{p}} } \left[ { - T_{L} (1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 2}} + \alpha_{{L_{\mathrm{p}} }} \mu^{4} (1 - T_{L} )} \right]K_{{n_{\mathrm{p}} }} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right) \hfill \\ & \quad - \mu^{3} (1 - T_{L} )\left[ {(1 + c_{\mathrm{p}} )^{{n_{\mathrm{p}} + 1}} + \alpha_{{L_{\mathrm{p}} }} \gamma_{L} \mu^{2} } \right]K_{{n_{\mathrm{p}} + 1}} \left( {\frac{{2\mu \sqrt {1 + c_{\mathrm{p}} } }}{{c_{\mathrm{p}} }}} \right). \hfill \\ \end{aligned}$$
(36)

The elements of matrix F which are used in Eq. (20) for the E-AFG beam are as follows:

$$F_{11} = \left[ {n_{\mathrm{e}}^{2} - \delta_{1}^{2} - \alpha_{0} \mu^{4} \left( {(\beta_{0}^{2} + \gamma_{0}^{2} )n_{\mathrm{e}} + \gamma_{0} } \right)} \right](1 - R_{0} ) + R_{0} n_{\mathrm{e}} ,$$
(37)
$$F_{12} = - \delta_{1} \left( {2n_{\mathrm{e}} - \alpha_{0} \mu^{4} (\beta_{0}^{2} + \gamma_{0}^{2} )} \right)(1 - R_{0} ) - R_{0} \delta_{1} ,$$
(38)
$$F_{13} = \left[ {n_{\mathrm{e}}^{2} + \delta_{2}^{2} - \alpha_{0} \mu^{4} \left( {(\beta_{0}^{2} + \gamma_{0}^{2} )n_{\mathrm{e}} + \gamma_{0} } \right)} \right](1 - R_{0} ) + R_{0} n_{\mathrm{e}} ,$$
(39)
$$F_{14} = - \delta_{2} \left( {2n_{\mathrm{e}} - \alpha_{0} \mu^{4} (\beta_{0}^{2} + \gamma_{0}^{2} )} \right)(1 - R_{0} ) - R_{0} \delta_{2} ,$$
(40)
$$F_{21} = \left( {n_{\mathrm{e}} (n_{\mathrm{e}}^{2} + \delta \,_{1}^{2} ) - \alpha_{0} \mu^{4} (1 + \gamma_{0} n_{\mathrm{e}} )} \right)(1 - T_{0} ) + T_{0} ,$$
(41)
$$F_{22} = - \delta_{1} (n_{\mathrm{e}}^{2} + \delta \,_{1}^{2} - \alpha_{0} \gamma_{0} \mu^{4} )(1 - T_{0} ),$$
(42)
$$F_{23} = \left( {n_{\mathrm{e}} (n_{\mathrm{e}}^{2} - \delta \,_{2}^{2} ) - \alpha_{0} \mu^{4} (1 + \gamma_{0} n_{\mathrm{e}} )} \right)(1 - T_{0} ) + T_{0} ,$$
(43)
$$F_{24} = - \delta_{2} (n_{\mathrm{e}}^{2} - \delta \,_{2}^{2} - \alpha_{0} \gamma_{0} \mu^{4} )(1 - T_{0} ),$$
(44)
$$\begin{gathered} F_{31} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {\alpha_{{L_{\mathrm{e}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )\left( {n_{\mathrm{e}} \cos (\delta_{1} ) + \delta_{1} \sin (\delta_{1} )} \right) + 2n_{\mathrm{e}} \delta_{1} \sin (\delta_{1} ) + (n_{\mathrm{e}}^{2} - \delta_{1}^{2} - \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\cos (\delta_{1} )} \right]} \right.(1 - R_{L} ) - \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\left( {n_{\mathrm{e}} \cos (\delta_{1} ) + \delta_{1} \sin (\delta_{1} )} \right)R_{L} } \right\}, \hfill \\ \end{gathered}$$
(45)
$$\begin{gathered} F_{32} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {\alpha_{{L_{\mathrm{e}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )\left( {n_{\mathrm{e}} \sin (\delta_{1} ) - \delta_{1} \cos (\delta_{1} )} \right) - 2n_{\mathrm{e}} \delta_{1} \cos (\delta_{1} ) + (n_{\mathrm{e}}^{2} - \delta_{1}^{2} - \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\sin (\delta_{1} )} \right](1 - R_{L} ) + } \right. \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\left( {\delta_{1} \cos (\delta_{1} ) - n_{\mathrm{e}} \sin (\delta_{1} )} \right)R_{L} } \right\}, \hfill \\ \end{gathered}$$
(46)
$$\begin{gathered} F_{33} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {\alpha_{{L_{\mathrm{e}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )\left( {n_{\mathrm{e}} \cosh (\delta_{2} ) - \delta_{2} \sinh (\delta_{2} )} \right) - 2n_{\mathrm{e}} \delta_{2} \sinh (\delta_{2} ) + (n_{\mathrm{e}}^{2} + \delta_{2}^{2} - \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\cosh (\delta_{2} )} \right]} \right.(1 - R_{L} ) + \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\left( {\delta_{2} \sinh (\delta_{2} ) - n_{\mathrm{e}} \cosh (\delta_{2} )} \right)R_{L} } \right\} \hfill \\ \end{gathered}$$
(47)
$$\begin{gathered} F_{34} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {\alpha_{{L_{\mathrm{e}} }} \mu^{4} (\beta_{L}^{2} + \gamma_{L}^{2} )\left( {n_{\mathrm{e}} \sinh (\delta_{2} ) - \delta_{2} \cosh (\delta_{2} )} \right) - 2n_{\mathrm{e}} \delta_{2} \cosh (\delta_{2} ) + (n_{\mathrm{e}}^{2} + \delta_{2}^{2} - \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\sinh (\delta_{2} )} \right](1 - R_{L} ) + } \right. \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\left( {\delta_{2} \cosh (\delta_{2} ) - n_{\mathrm{e}} \sinh (\delta_{2} )} \right)R_{L} } \right\}, \hfill \\ \end{gathered}$$
(48)
$$\begin{gathered} F_{41} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {(n_{\mathrm{e}}^{2} + \delta_{1}^{2} - \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\left( {n_{\mathrm{e}} \cos (\delta_{1} ) + \delta_{1} \sin (\delta_{1} )} \right) + \alpha_{{L_{\mathrm{e}} }} \mu^{4} \cos (\delta_{1} )} \right]} \right.(1 - T_{L} ) - \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\cos (\delta_{1} )T_{L} } \right\}, \hfill \\ \end{gathered}$$
(49)
$$\begin{gathered} F_{42} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {(n_{\mathrm{e}}^{2} + \delta_{1}^{2} - \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\left( {n_{\mathrm{e}} \sin (\delta_{1} ) - \delta_{1} \cos (\delta_{1} )} \right) + \alpha_{{L_{\mathrm{e}} }} \mu^{4} \sin (\delta_{1} )} \right]} \right.(1 - T_{L} ) - \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\sin (\delta_{1} )T_{L} } \right\}, \hfill \\ \end{gathered}$$
(50)
$$\begin{gathered} F_{43} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {(\delta_{2}^{2} - n_{\mathrm{e}}^{2} + \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\left( {\delta_{2} \sinh (\delta_{2} ) - n_{\mathrm{e}} \cosh (\delta_{2} )} \right) + \alpha_{{L_{\mathrm{e}} }} \mu^{4} \cosh (\delta_{2} )} \right]} \right.(1 - T_{L} ) - \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\cosh (\delta_{2} )T_{L} } \right\}, \hfill \\ \end{gathered}$$
(51)
$$\begin{gathered} F_{44} = e^{{ - n_{\mathrm{e}} }} \left\{ {\left[ {(\delta_{2}^{2} - n_{\mathrm{e}}^{2} + \alpha_{{L_{\mathrm{e}} }} \gamma_{L} \mu^{4} )\left( { - n_{\mathrm{e}} \sinh (\delta_{2} ) + \delta_{2} \cosh (\delta_{2} )} \right) + \alpha_{{L_{\mathrm{e}} }} \mu^{4} \sinh (\delta_{2} )} \right]} \right.(1 - T_{L} ) - \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \left. {\sinh (\delta_{2} )T_{L} } \right\}. \hfill \\ \end{gathered}$$
(52)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bambaeechee, M. Exact Frequencies for Free Vibration of Exponential and Polynomial AFG Beams with Lumped End Masses and Elastic Supports. J. Vib. Eng. Technol. 11, 2903–2926 (2023). https://doi.org/10.1007/s42417-022-00720-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-022-00720-8

Keywords

Navigation