Skip to main content
Log in

Production of prodigiosin by a drug-resistant Serratia rubidaea HB01 isolated from sewage

  • Original Article
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Production of green pigments has drawn great attention recently in various applications like foods, cosmetics, nutraceuticals, and pharmaceuticals as it counters the harmful effects of synthetic dyes. Use of green natural products, especially microbe-derived colours in food and cosmetics is rapidly developing for its eco-friendly nature and cost effectiveness. In this study, a red pigment producing rod-shaped, Gram-negative bacterium Serratia rubidaea HB01 was isolated from domestic sewage. The isolate exhibited wide resistance to various groups of antibiotics, including Aminoglycosides, Lincosamides, Macrolides, Nitroimidazoles, Penicillins, Quinolones, and Tetracyclines. The isolate S. rubidaea HB01 significantly produced red prodigiosin pigment (17.9 mg ml−1). The production of prodigiosin was highly pH sensitive and growth media specific. The UV–Vis spectrum of the red pigment dissolved in methanol showed a maximum absorption at 536 nm in neutral pH. Red fraction with Rf value 0.38 purified by thin layer chromatography (TLC) was further subjected to liquid chromatography and mass spectrometric (LC–MS) analysis. Moreover, a strong band of pyrrolenine (C = N) at vmax 1639 was found comparable to prodigiosin as observed from Fourier-transform infrared (FTIR) spectra. Alongside, the presence of a typical methoxy group with chemical shifts at δ 4.0 ppm and δ 58.5 ppm was revealed by 1H and 13C nuclear magnetic resonance (NMR) spectra respectively, confirming the red pigment produced to be prodigiosin. The molecular weight of the prodigiosin was identified as 323 (m/z 324, [M + H]+). Serratia species that typically develop antibiotic resistance mechanisms are already known to produce antibiotics (carbapenem and bacteriocins) and prodigiosin pigment by integrating Quorum Sensing (QS) with overlapping pigment production regulatory systems (pigP). Consequently, mutations in this regulatory region may influence the production of prodigiosin and antibiotic resistance mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11(12):2970–2988

    CAS  Google Scholar 

  • Ahmad AS, Ahmad WW, Zakaria ZK, Yosof NZ (2012) Applications of bacterial pigments as colorant: the Malaysian perspective. N Y Springer Briefs Mol Sci 3(7):57–74

    Google Scholar 

  • Banerjee A, Das D, Rudra SG, Mazumder K, Andler R, Bandopadhyay R (2020) Characterization of exopolysaccharide produced by Pseudomonas sp. PFAB4 for synthesis of EPS-coated AgNPs with antimicrobial properties. J Polym Environ 28(1):242–256

    CAS  Google Scholar 

  • Bennett JW, Bentley R (2000) Seeing red: the story of prodigiosin. Adv Appl Microbiol 47:1–32

    CAS  Google Scholar 

  • Bonnin RA, Didi J, Ergani A, Lima S, Naas T (2017) Chromosome-encoded broad-spectrum Ambler class A β-lactamase RUB-1 from Serratia rubidaea. Antimicrob Agents Chemother 61(2):e01908–e1916

    CAS  Google Scholar 

  • Boric M, Danevcic T, Stopar D (2011) Prodigiosin from Vibrio sp. DSM 14379; A new UV-protective pigment. Microb Ecol 62(3):528–536

    CAS  Google Scholar 

  • Bizio B (1823) Lettera di Bartolomeo Bizio al chiarissimo canonico Angelo Bellani sopra il fenomeno della polenta porporina. Biblioteca Italiana o sia Giornale di Letteratura. Scienze e Arti (Anno VIII) 30:275–295

    Google Scholar 

  • Biswas R, Panja AS, Bandopadhyay R (2019) Molecular mechanism of Antibiotic resistance: the untouched area of future hope. Indian J Microbiol 59(2):254–259

    Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87

    CAS  Google Scholar 

  • Carbonell GV, Della Colleta HHM, Yano T, Darini ALC, Levy CE, Fonseca BAL (2000) Clinical relevance and virulence factors of pigmented Serratia marcescens. FEMS Immunol Med Microbiol 28:143–149

    CAS  Google Scholar 

  • Castro AJ (1967) Antimalarial activity of prodigiosin. Nature 213(5079):903

    CAS  Google Scholar 

  • Casullo de Araújo HW, Fukushima K, Campos-Takaki GM (2010) Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as low-cost substrate. Molecules 15:6931–6940

    Google Scholar 

  • Chauhan K, Dalsaniya P, Pathak H (2015) Optimization of prodigiosin-type biochrome production and effect of mordants on textile dyeing to improve dye fastness. Fiber Polym 16(4):802–808

    CAS  Google Scholar 

  • Chen WC, Yu WJ, Chang CC et al (2013) Enhancing production of prodigiosin from Serratia marcescens C3 by statistical experimental design and porous carrier addition strategy. Biochem Eng J 78:93–100

    CAS  Google Scholar 

  • Darshan N, Manonmani HK (2015) Prodigiosin and its potential applications. J Food Sci Technol 52:5393

    CAS  Google Scholar 

  • Doddapaneni KK, Tatineni R, Vellanki RN et al (2007) Purification and characterization of two novel extra cellular proteases from Serratia rubidaea. Process Biochem 42(8):1229–1236

    CAS  Google Scholar 

  • Danevčič T, Vezjak MB, Zorec M et al (2016) Prodigiosin—a multifaceted Escherichia coli antimicrobial agent. PLoS ONE 11:e0162412

    Google Scholar 

  • Ewing WH, Davis BR, Fife MA et al (1973) Biochemical characterization of Serratia liquefaciens (Grimes and Hennerty) Bascomb et al. (formerly Enterobacter liquefaciens) and Serratia rubidaea comb. nov. and designation of type and neotype strains. Int J Syst Bacteriol 23:217–225

    Google Scholar 

  • Fineran PC, Slater H, Everson L et al (2005) Biosynthesis of tripyrrole and betalactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517

    CAS  Google Scholar 

  • Furstner A (2003) Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years. Angew Chem Int Edit 42(31):3582–3603

    Google Scholar 

  • Gupta P, Balaji R, Parani M et al (2015) Phylogenetic analysis and biological characteristic tests of marine bacteria isolated from Southern Ocean (Indian sector) water. Acta Oceanol Sin 34(8):73–82

    CAS  Google Scholar 

  • Grimont F, Grimont PA (2006) The genus Serratia. In: Dworkin M (ed) The prokaryotes. Springer, New York pp 219–244

  • Grimont PA, Grimont F (1978) The genus Serratia. Annu Rev Microbiol 32(1):221–248

    CAS  Google Scholar 

  • Hejazi A, Falkiner FR (1997) Serratia marcescens. J Med Microbiol 46(11):903–912

    CAS  Google Scholar 

  • Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J et al (2018) Natural biocide cocktails: combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS ONE 13(7):e0200940

    Google Scholar 

  • Hailei W, Zhifang R, Ping L, Yanchang G, Guosheng L, Jianming Y (2011) Improvement of the production of a red pigment in Penicillium sp. HSD07B synthesized during co-culture with Candida tropicalis. Bioresour Technol 102(10):6082–6087

    Google Scholar 

  • Immanuel G, Esakkiraj P, Jebadhas A et al (2008) Investigation of lipase production by milk isolate Serratia rubidaea. Food Technol Biotech 46(1):60–65

    CAS  Google Scholar 

  • Jimtha CJ, Jishma P, Sreelekha S et al (2017) Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere 3:105–108

    Google Scholar 

  • Kamou NN, Dubey M, Tzelepis G, Menexes G, Papadakis EN, Karlsson M et al (2016) Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7. Arch Microbiol 198(4):369–377

    CAS  Google Scholar 

  • Karkey A, Joshi N, Chalise S, Joshi S, Shrestha S, Thi Nguyen TN et al (2018) Outbreaks of Serratia marcescens and Serratia rubidaea bacteremia in a central Kathmandu hospital following the 2015 earthquakes. Trans R Soc Trop Med Hyg 112(10):467–472

    CAS  Google Scholar 

  • Kawasaki T, Sakurai F, Hayakawa Y (2008) A prodigiosin from the roseophilin producer Streptomyces griseoviridis. J Nat Prod 71(7):1265–1267

    CAS  Google Scholar 

  • Kim D, Lee JS, Park YK et al (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J Appl Microbiol 102(4):937–944

    CAS  Google Scholar 

  • Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    CAS  Google Scholar 

  • Kramar A, Ilic-Tomic T, Petkovic M, Radulović N, Kostic M, Jocic D, Nikodinovic-Runic J (2014) Crude bacterial extracts of two new Streptomyces sp. isolates as bio-colorants for textile dyeing. World J Microb Biot 30(8):2231–2240

    Google Scholar 

  • Kumari B, Lohar S, Ghosh M et al (2016) Structurally characterized Zn2+ selective ratiomertic fluorescence probe in 100% water for HeLa Cell imaging: experimental and computational studies. J Fluoresc 26(1):87–103

    CAS  Google Scholar 

  • Lee JJ, Lee YH, Park SJ et al (2017) Spirosomaknui sp. nov., a radiation-resistant bacterium isolated from the Han River. Int J Syst Evol Microbiol 67(5):1359–1365

    CAS  Google Scholar 

  • Lee JS, Kim YS, Park S et al (2011) Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1–1. Appl Environ Microbiol 77(14):4967–4973

    CAS  Google Scholar 

  • Li P, Kwok AHY, Jiang J et al (2015) Comparative genome analyses of Serratia marcescens FS14 reveals its high antagonistic potential. PLoS ONE 10(4):e0123061

    Google Scholar 

  • Lin C, Jia X, Fang Y, Chen L, Zhang H, Lin R, Chen J (2019a) Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electron J Biotechn 40:58–64

    CAS  Google Scholar 

  • Lin PB, Shen J, Ou PY, Liu LY, Chen ZY, Chu FJ et al (2019b) Prodigiosin isolated from Serratia marcescens in the Periplaneta americana gut and its apoptosis-inducing activity in HeLa cells. Oncol Rep 41(6):3377–3385

    CAS  Google Scholar 

  • Liu X, Wang Y, Sun S, Zhu C, Xu W, Park Y, Zhou H (2013) Mutant breeding of Serratia marcescens strain for enhancing prodigiosin production and application to textiles. Prep Biochem Biotechnol 43(3):271–284

    CAS  Google Scholar 

  • Lu RL, Luo FF, Hu FL, Huang B, Li CR, Bao GH (2013) Identification and production of a novel natural pigment, cordycepoid A, from Cordyceps bifusispora. Appl Microbiol Biotechnol 97(14):6241–6249

    CAS  Google Scholar 

  • Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    CAS  Google Scholar 

  • Maran JP, Priya B, Nivetha CV (2015) Optimization of ultrasound-assisted extraction of natural pigments from Bougainvillea glabra flowers. Ind Crops Prod 63:182–189

    CAS  Google Scholar 

  • Marchal E, Smithen DA, Uddin MI, Robertson AW, Jakeman DL, Mollard V et al (2014) Synthesis and antimalarial activity of prodigiosenes. Org Biomol Chem 12(24):4132–4142

    CAS  Google Scholar 

  • Nalini S, Parthasarathi R (2014) Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour Technol 173:231–238

    CAS  Google Scholar 

  • Nalini S, Parthasarathi R (2018) Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Ann Agrar Sci 16(2):108–115

    Google Scholar 

  • Nehal F, Sahnoun M, Dab A, Sebaihia M, Bejar S, Jaouadi B (2019) Production optimization, characterization, and covalent immobilization of a thermophilic Serratia rubidaea lipase isolated from an Algerian oil waste. Mol Biol Rep 46(229):1–15

    Google Scholar 

  • Parment PA, Ursing J, Palmer B (1984) Serratia rubidaea isolated from a silastic foam dressing. Infection 12:268–269

    CAS  Google Scholar 

  • Pridham TG, Gottlieb D (1948) The utilization of carbon compounds by some actinomycetales as an aid for species determination. J Bacteriol 56(1):107–114

    CAS  Google Scholar 

  • Saini DK, Pabbi S, Shukla P (2018) Cyanobacterial pigments: perspectives and biotechnological approaches. Food Chem Toxicol 120:616–624

    CAS  Google Scholar 

  • Saini DK, Chakdar H, Pabbi S, Shukla P (2020) Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 60(3):391–405

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  Google Scholar 

  • Sarkar S, Ponce NT, Banerjee A, Bandopadhyay R, Rajendran S, Lichtfouse E (2020) Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01021-w

    Article  Google Scholar 

  • Siva R, Subha K, Bhakta D, Ghosh AR, Babu S (2012) Characterization and enhanced production of prodigiosin from the spoiled coconut. Appl Biochem Biotechnol 166(1):187–196

    CAS  Google Scholar 

  • Slater H, Crow M, Everson L et al (2003) Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and-independent pathways. Mol Microbiol 47(2):303–320

    CAS  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Song MJ, Bae J, Lee DS et al (2006) Purification and characterization of prodigiosin produced by integrated bioreactor from Serratia sp. KH-95. J Biosci Bioeng 101(2):157–161

    CAS  Google Scholar 

  • Stapp C (1940) Bacterium rubidaeum nov. spec. Zentratbl Bakteriol Abt II 102:251–261

    Google Scholar 

  • Sinha R, Shukla P (2019) Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives. Protein Pept Lett 26(2):79–87

    CAS  Google Scholar 

  • Sinha R, Sharma B, Dangi AK, Shukla P (2019) Recent metabolomics and gene editing approaches for synthesis of microbial secondary metabolites for drug discovery and development. World J Microbiol Biotechnol 35(11):166

    Google Scholar 

  • Todorov SD, de Melo Franco BDG, Tagg JR (2019) Bacteriocins of Gram-positive bacteria having activity spectra extending beyond closely-related species. Benef Microbes 10(3):315–328

    CAS  Google Scholar 

  • Ursua PR, Unzaga MJ, Melero P et al (1996) Serratia rubidaea as an invasive pathogen. J Clin Microbiol 34(1):216–217

    CAS  Google Scholar 

  • Valente A, Boffo EF, Ferreira AG et al (2008) Complete NMR Assignments of a new Prodigiosin isolated from Streptomyces violaceusniger violaceusniger. Annals of Magnetic Resonance 7:1–11

    Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079

    CAS  Google Scholar 

  • Wang Z, Li B, Zhou L, Yu S, Su Z, Song J et al (2016) Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci USA 113(46):13150–13155

    CAS  Google Scholar 

  • Wilft NM, Salmond GPC (2012) The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006. Microbiology 158:648–658

    Google Scholar 

  • Williams RP, Green JA, Rappoport DA (1956) Studies on pigmentation of Serratia marcescens I.: spectral and paper chromatographic properties of prodigiosin. J Bacteriol 71(1):115

    CAS  Google Scholar 

  • Williamson NR, Simonsen HT, Ahmed RA, Goldet G, Slater H, Woodley L, Leeper FJ, Salmond GP (2005) Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol 56(4):971–989

    CAS  Google Scholar 

  • Williamson NR, Fineran PC, Gristwood T (2007) Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol 2(6):605–618

    CAS  Google Scholar 

  • Xing S, Ma T, Zhang X, Huang Y, Mi Z, Sun Q et al (2017) First complete genome sequence of a virulent bacteriophage infecting the opportunistic pathogen Serratia rubidaea. Arch Virol 162(7):2021–2028

    CAS  Google Scholar 

  • Yip CH, Yarkoni O, Ajioka J, Wan KL, Nathan S (2019) Recent advancements in high-level synthesis of the promising clinical drug, prodigiosin. Appl Microbiol Biotechnol 103(4):1667–1680

    CAS  Google Scholar 

  • Yu VL (1979) Serratia marcescens: historical perspective and clinical review. N Engl J Med 300(16):887–893

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to UGC-Center of Advanced Study and DST-FIST, Department of Botany, The University of Burdwan, Burdwan for pursuing all the research facilities. UH is thankful to SRF (State Fund) for the financial assistance [Fc (Sc.)/RS/SF/BOT./2017-18/22]. We are also thankful to University Science Instrumentation Centre (USIC), The University of Burdwan, Burdwan and Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi for the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Bandopadhyay.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, U., Banerjee, A., Biswas, R. et al. Production of prodigiosin by a drug-resistant Serratia rubidaea HB01 isolated from sewage. Environmental Sustainability 3, 279–287 (2020). https://doi.org/10.1007/s42398-020-00115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-020-00115-z

Keywords

Navigation