Skip to main content
Log in

Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

An optimally designed Dual Source Vertical Tunnel Field Effect Transistors is proposed and investigated using technology computer aided design simulation. The vertical tunnel FET have dispersal of source channel drain in the vertical direction which will enhance the scalability of the simulated device. The benefit of the TFET is switching mechanism which is done by quantum tunnelling method through a barrier instead of thermionic emission over the barrier as that of conventional MOSFETs. The key of this paper, we have developed two-dimensional model of single drain with dual source n-type vertical tunnel field effect transistor. Further introduction to an ultra-thin channel among the drain and gate region will makes aggressive improvement in the numerical simulations of minimum threshold voltage (VT) of 0.15 V and average subthreshold slope of 3.47 mV/decade. The variation effect in the channel thickness, source height, drain doping, source doping, temperature and work function has been simulated and examined by 2D silvaco TCAD tool. High ON current and low OFF current is recorded as 1.74 × 10−4 A/µm and 6.92 × 10−13 A/µm respectively with ION/IOFF current ratio in order of 108 to 109.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Kahng, U.S. Patent No. 3,102,230 (1963)

  2. D. Kahng, IEEE Trans. Electron Devices 23, 655 (1976)

    Article  Google Scholar 

  3. G.E. Moore, Proc. IEEE 11, 33 (2006)

    Google Scholar 

  4. S. Borkar, ACM Queue 1, 26 (2003)

    Article  Google Scholar 

  5. S. Veeraraghavan, Jerry G. Fossum, IEEE Trans. Electron Devices 36, 522 (1989)

    Article  Google Scholar 

  6. C. Bulucea, F.-C. Wang, P. Chaparala, U.S. Patent No. 6, 548, 842 (2003)

  7. K. Young, Konrad. IEEE Trans. Electron Devices 36, 399 (1989)

    Article  Google Scholar 

  8. W.Y. Choi, B.-G. Park, J.-D. Lee, T.-J.K. Liu, IEEE Electron Device Lett. 28, 43 (2007)

    Article  Google Scholar 

  9. K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, Digest. International Electron Devices Meeting, IEEE 7509297 (2002)

  10. Y. Khatami, K. Banerjee, IEEE Trans. Electron Devices 56, 2752 (2009)

    Article  CAS  Google Scholar 

  11. Z. Jiang, Z. Yiqi, L. Cong, W. Ping, L. Yuqi, J. Semicond. 37, 094003 (2016)

    Article  Google Scholar 

  12. K.-H. Kao, A. Verhulst, W.G. Vandenberghe, B. Soree, G. Groseseneken, K.M. Meyer, IEEE Trans. Electron Devices 59, 292 (2012)

    Article  CAS  Google Scholar 

  13. P.-Y. Wang, B.-Y. Tsui, IEEE Trans. Nanotechnol. 15, 74 (2016)

    Article  CAS  Google Scholar 

  14. B. Hoefflinger, Int. Roadmap Semicond. 2, 143 (2016)

    Google Scholar 

  15. M. Neisser, S. Wurm, Adv. Opt. Technol. 4, 235 (2015)

    Google Scholar 

  16. K.K. Bhuwalka, J. Schulze, I. Eisele, IEEE Trans. Electron Devices 52, 909 (2005)

    Article  CAS  Google Scholar 

  17. K.K. Bhuwalka, S. Sedlmaier, A.K. Ludsteck, C. Tolksdorf, J. Schulze, E. Ignaz, IEEE Trans. Electron Devices 51, 279 (2004)

    Article  CAS  Google Scholar 

  18. K. Nigam, P. Kondekar, D. Sharma, Micro Nano Lett. 11, 319 (2016)

    Article  CAS  Google Scholar 

  19. N.D. Lang, W. Kohn, Phys. Rev. B 3, 1215 (1971)

    Article  Google Scholar 

  20. W. Girish, R. Balwinder, J. Electron. Mater. 47, 4883 (2018)

    Google Scholar 

  21. S. Singh, B. Raj, J. Electron. Mater. 48, 6253 (2019)

    Article  CAS  Google Scholar 

  22. A.C. Ford, C.W. Yeung, S. Chuang, Appl. Phys. Lett. 98, 113105 (2011)

    Article  Google Scholar 

  23. S. Singh, B. Raj, in First International Conference on Secure Cyber Computing and Communication, 192 (2018)

  24. F. Chen, H. Ilatikhameneh, Y. Tan, G. Klimeck, R. Rahman, IEEE Trans. Electron Devices 65, 3065 (2018)

    Article  CAS  Google Scholar 

  25. H. Lee, J.-D. Park, C. Shin, IEEE Trans. Electron Devices 63, 1827 (2016)

    Article  Google Scholar 

  26. D.W. Kwon, H.W. Kim, H.K. Jang, E. Park, J. Lee, W. Kim, S. Kim, J.-H. Lee, B.-G. Park, IEEE Trans. Electron Devices 64, 1799 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the VLSI design group of NIT Jalandhar for their interest in this work and useful comments to draft the final form of the paper. The support of DST-SERB Project (ECR/2017/000922) is gratefully acknowledged. We would like to thank NIT Jalandhar for lab facilities and research environment to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Wadhwa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badgujjar, S., Wadhwa, G., Singh, S. et al. Design and Analysis of Dual Source Vertical Tunnel Field Effect Transistor for High Performance. Trans. Electr. Electron. Mater. 21, 74–82 (2020). https://doi.org/10.1007/s42341-019-00154-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00154-2

Keywords

Navigation