Skip to main content

Advertisement

Log in

Toxicity and Electrochemical Detection of Lead, Cadmium and Nitrite Ions by Organic Conducting Polymers: A Review

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Water pollution by heavy metals and nitrite ions is a public health concern around the world because they can degrade the quality of drinking water and cause serious diseases. Lead and cadmium are probably the most dangerous heavy metals. Indeed, lead contamination can affect fertility and pregnancy, cause infantile diseases and other mutagenic and carcinogenic effects. Exposure to cadmium can cause death in mammals, and nitrite ions are also very harmful. For all these reasons, it is necessary to find effective techniques to quantify the levels of these pollutants. Recently, there is great hope in the use of organic conducting polymers in the field of heavy metals detection. In this review, we presented studies of the toxicity of several heavy metals and nitrite ions and on their impact on the environment and human health. Also, the recent developments in the use of OCPs and their application in the detection of heavy metals and nitrite ions have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reprinted from Wei et al. [82], Copyright 2013, with permission from Elsevier

Fig. 2

Reprinted from Huang et al. [87], Copyright 2016, with permission from Elsevier

Fig. 3

(Reproduced from Ref. [117] with permission from The Royal Society of Chemistry)

Fig. 4

Reprinted from Guo et al. [120], Copyright 2005, with permission from Elsevier

Similar content being viewed by others

Abbreviations

ABS:

Benzenesulfonic acid

AES:

Atomic emission spectroscopy

AP:

Aminophenyl

ATT:

5-Amino-1,3,4-thiadiazole-2-thiol

AuNP:

Gold nanoparticles

AuNP:

Gold nanoparticles

AuNPs:

Gold nanoparticles

BIA:

Batch injection analysis

Fbg:

Fibrinogen

BiFE:

Bismuth films electrodes

BMP:

1-Butyl-1-methylpyrrolidinium

ChA:

Chronoamperometry

CG:

Carboxyl graphene

CNFs:

Carbon nanofibers

CNTs:

Carbon nanotubes

Co-NS:

Cobalt nanostructures

CPE:

Carbon pencil electrode

CQDs:

Carbon quantum dots

CS:

Chitosan

CV:

Cyclic voltammetry

DAN:

Diaminonaphthalene

DPASV:

Differential pulse-anodic stripping voltammetry

DPV:

Differential pulse voltammetry

EMIM:

1-Ethyl-3-methylimidazolium

f-MWCNT:

Functionalized MWCNT

FMWCNTs:

Acid functionalized MWCNTs

FAAS:

Flame-atomic absorption spectrometry

GO:

Graphene oxide

GCE:

Glassy carbon electrodes

IARC:

International Agency for Research on Cancer

ICP:

Inductively induced plasma

ITO:

Indium-doped tin oxide

LOD(s):

Limit(s) of detection

LSV:

Linear sweep voltammetry

MAS:

Molecular absorption spectrometry

MES:

2-Mercaptoethanesulfonate

MS:

Mass spectrometry

MWNT(s):

Multi-walled nanotube(s)

NA:

Nafion

nHAp:

Nano-sized hydroxyapatite

OCPs:

Organic conducting polymers

OD:

1,8-Octanediamine

OES:

Optical emission spectroscopy

OMt:

Organophilic montmorillonite clay

PA:

Phytic acid

PANI:

Polyaniline

PANI-ES:

Emeraldine salt polyaniline

PANI-GO:

Polyaniline/graphene oxide

PANI-NTS:

Size-tunable polyaniline nanotubes

PAOA:

Poly(aniline-co-o-aminophenol)

P(DPA):

Polydiphenylamine

P(DPA-co-2ABN):

Poly(diphenylamine-co-2-aminobenzonitrile)

PEDOT:

Poly(ethylenedioxythiophene)

PGE:

Pencil graphite electrode

PHA:

1H-Pyrrole-1-hexanoic acid

PLG:

Pencil lead graphite

PProDOT:

Polypropylenedioxythiophene

PPy:

Polypyrrole

PPy/CNSs:

Polypyrrole/carbonaceous nanospheres

PPy-GO:

Polypyrrole/graphene oxide

PS:

Polystyrene

PTB:

Poly(toluidine blue)

PVF+:

Poly(vinylferrocenium)

rGO:

Reduced graphene oxide

SDS:

Sodium dodecyl sulfate

SPE:

Screen printed electrode

SWASV:

Square wave anodic stripping voltammetry

SWV:

Square wave voltammetry

TFSA:

Bis(trifluoromethylsulfonyl)amide

UiO-66-NH2:

Zr/2-Amino-terephthalate metal–organic framework

WHO:

World Health Organization

ZIF:

Zeolitic imidazolate framework

References

  1. Verla EN, Verla AW, Enyoh CE (2020) Bioavailability, average daily dose and risk of heavy metals in soils from children playgrounds within Owerri, Imo State, Nigeria. Chem Afr. https://doi.org/10.1007/s42250-020-00124-9

    Article  Google Scholar 

  2. Kim J-J, Kim Y-S, Kumar V (2019) Heavy metal toxicity: an update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231

    CAS  PubMed  Google Scholar 

  3. Lentini P, Zanoli L, de Cal M, Granata A, Dell’Aquila R (2019) Chapter 222—Lead and heavy metals and the kidney. In: Ronco C, Bellomo R, Kellum JA, Ricci Z (eds) Critical care nephrology, 3rd edn, pp 1324–1330.e1. https://doi.org/10.1016/B978-0-323-44942-7.00222-3

  4. Edogbo B, Okolocha E, Maikai B, Aluwong T, Zakari F, Uchendu C (2020) Assessment of potentially toxic elements in soils, water and vegetables around river Salanta area of Kano State, Nigeria: health risk analysis. Chem Afr. https://doi.org/10.1007/s42250-020-00141-8

    Article  Google Scholar 

  5. U.S. Environmental Protection Agency (2015) Drinking water contaminants|environments and contaminants-America’s children and the environment|third edition. https://www.epa.gov/sites/production/files/2015-10/documents/ace3_drinking_water.pdf. Accessed 13 Apr 2020

  6. World Health Organization (2011) Guidelines for drinking-water quality. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/. Accessed 13 Apr 2020

  7. Chauhan M, Bhardwaj SK, Bhanjana G, Kumar R, Dilbaghi N, Kumar S, Chaudhary GR (2019) Chapter 3—Conducting polymers and metal-organic frameworks as advanced materials for development of nanosensors. In: Deep A, Kumar S (eds) Advances in nanosensors for biological and environmental analysis, Elsevier, pp 43–62

  8. Ballav N, Maity A, Mishra SB (2012) High efficient removal of chromium(VI) using glycine doped polypyrrole adsorbent from aqueous solution. Chem Eng J 198–199:536–546

    Google Scholar 

  9. Sall ML, Diaw AKD, Gningue-Sall D, Chevillot-Biraud A, Oturan N, Oturan MA, Aaron J-J (2017) Removal of Cr(VI) from aqueous solution using electrosynthesized 4-amino-3-hydroxynaphthalene-1-sulfonic acid doped polypyrrole as adsorbent. Environ Sci Pollut Res 24:21111–21127

    CAS  Google Scholar 

  10. Sall ML, Diaw AKD, Gningue-Sall D, Chevillot-Biraud A, Oturan N, Oturan MA, Fourdrin C, Huguenot D, Aaron J-J (2018) Removal of lead and cadmium from aqueous solutions by using 4-amino-3-hydroxynaphthalene sulfonic acid-doped polypyrrole films. Environ Sci Pollut Res 25:8581–8591

    CAS  Google Scholar 

  11. Deshmukh MA, Shirsat MD, Ramanaviciene A, Ramanavicius A (2018) Composites based on conducting polymers and carbon nanomaterials for heavy metal ion sensing (review). Crit Rev Anal Chem 48:293–304

    CAS  PubMed  Google Scholar 

  12. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614:1–26

    CAS  PubMed  Google Scholar 

  13. Lin M, Hu X, Ma Z, Chen L (2012) Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions. Anal Chim Acta 746:63–69

    CAS  PubMed  Google Scholar 

  14. Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Eng J 299:150–155

    CAS  Google Scholar 

  15. Msaadi R, Ammar S, Chehimi MM, Yagci Y (2017) Diazonium-based ion-imprinted polymer/clay nanocomposite for the selective extraction of lead(II) ions in aqueous media. Eur Polym J 89:367–380

    CAS  Google Scholar 

  16. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206

    CAS  Google Scholar 

  17. Bedioui F, Griveau S (2009) Voltampérométrie sur électrode solide; Perfectionnement des performances. Techniques de l'ingénieur Méthodes électrochimiques P2128 V2. https://www.techniques-ingenieur.fr

  18. Zhang JXJ, Hoshino H (2014) Chapter 4—Electrical transducers: electrochemical sensors and semiconductor molecular sensors. In: Zhang JXJ, Hoshino K (eds) Molecular sensors and nanodevices, William Andrew Publishing, pp 169–232

  19. Amine A, Mohammadi, H (2019) Amperometry. In: Worsfold P, Poole C, Townshend A, Miró M (eds) Encyclopedia of analytical science, 3rd edn. Academic Press, pp 85–98

  20. Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259

    CAS  Google Scholar 

  21. Xie H, Wise SS, Holmes AL, Xu B, Wakeman TP, Pelsue SE, Singh NP, Wise JP Sr (2005) Carcinogenic lead chromate induces DNA double-strand breaks in human lung cells. Mutat Res 586:160–172

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu J, Lian L, Wang XF (2008) Lead induces oxidative stress, DNA damage and alteration of p 53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol 46:1488–1494

    CAS  PubMed  Google Scholar 

  23. Zhang J, Caob H, Zhang Y, Zhang Y, Ma J, Wang J, Gao Y, Zhang X, Zhang F, Chu L (2013) Nephroprotective effect of calcium channel blockers against toxicity of lead exposure in mice. Toxicol Lett 218:273–280

    CAS  PubMed  Google Scholar 

  24. Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7

    CAS  PubMed  Google Scholar 

  25. Becker T, Dierchke H (2008) Vegetation response to high concentrations of heavy metals in the Harz Mountains, Germany. Phytocoenologia 38:255–265

    Google Scholar 

  26. Offem BO, Ayotunde EO (2008) Toxicity of lead to freshwater invertebrates (water fleas; Daphnia magna and Cyclop sp) in fish ponds in a tropical floodplain. Water Air Soil Pollut 192:39–46

    CAS  Google Scholar 

  27. Chen J, Chen Y, Liu W, Bai C, Liu X, Liu K, Li R, Zhu JH, Huang C (2012) Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish. Neurotoxicol Teratol 34:581–586

    CAS  PubMed  Google Scholar 

  28. Francisco ND, Troya RJD, Aguera EI (2003) Lead and lead toxicity in domestic and free-living birds. Avian Pathol 32:3–13

    PubMed  Google Scholar 

  29. Ishii C, Nakayama SMM, Kataba A, Ikenaka Y, Saito K (2018) Characterization and imaging of lead distribution in bones of lead-exposed birds by ICP-MS and LA-ICP-MS. Chemosphere 212:994–1001

    CAS  PubMed  Google Scholar 

  30. Patrick L (2006) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11:114–127

    PubMed  Google Scholar 

  31. Cancer Environment (2018) Cadmium et ses composés. https://www.cancer-environnement.fr/411-Cadmium-et-ses-composes.ce.aspx. Accessed 13 Apr 2020

  32. Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA (2017) Cadmium toxicity and treatment: an update. Casp J Intern Med 8:135–145

    Google Scholar 

  33. Goullé J-P, Saussereau E, Mahieu L, Bouige D, Guerbet M, Lacroix C (2010) Une nouvelle approche biologique: le profil métallique. Ann Biol Clin 68:29–40

    Google Scholar 

  34. Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Santi A, Toni C (2014) Alterations in carbohydrate and protein metabolism in silver catfish (Rhamdia quelen) exposed to cadmium. Ecotoxicol Environ Saf 100:188–192

    CAS  PubMed  Google Scholar 

  35. Othumpamgat S, Kashon M, Joseph P (2005) Eukaryotic translation initiation factor 4E Is a cellular target for toxicity and death due to exposure to cadmium chloride. J Biol Chem 280:162–169

    Google Scholar 

  36. Satarug S, Vesey DA, Gobe GC (2017) Kidney cadmium toxicity, diabetes and high blood pressure: the perfect storm. Tohoku J Exp Med 241:65–87

    CAS  PubMed  Google Scholar 

  37. Poey J, Philibert C (2000) Toxicité des métaux. Rev Fr Lab 323:35–43

    Google Scholar 

  38. Hutchinson D, Müller J, McCarthy JE, Gun’ko YK, Verma NK, Bi X, Di Cristo L, Kickham L, Movia D, Prina-Mello A, Volkov Y (2018) Cadmium nanoparticles citrullinate cytokeratins within lung epithelial cells: cadmium as a potential cause of citrullination in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulm Dis 13:441–449

    CAS  Google Scholar 

  39. Liu J, Yu L, Castro L, Yan Y, Sifre MI, Bortner CD, Dixon D (2019) A nongenomic mechanism “metalloestrogenic” effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptor. Arch Toxicol 93:2773–2785

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang Q, Zhang C, Ge J, Lv MW, Talukder M, Guo K, Li YH, Li JL (2020) Ameliorative effects of resveratrol against cadmium-induced nephrotoxicity via modulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy. Food Funct 11:1856–1868

    PubMed  Google Scholar 

  41. Phillip CJC, Prankel SH (2011) Cadmium and the welfare of animals. In: Nriagu J (ed) Encyclopedia of environmental health, 2nd edn. Elsevier, Amsterdam, pp 470–474

  42. Khafaga AF, Abd El-Hack ME, Taha AE, Elnesr SS, Alagawany M (2019) The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: a review. Environ Sci Pollut Res 26:4588–4604

    CAS  Google Scholar 

  43. Ogunkunle CO, Odulaja DA, Akande FO, Varun M, Vishwakarma V, Fatoba PO (2020) Cadmium toxicity in cowpea plant: effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J Biotechnol 310:54–61

    CAS  PubMed  Google Scholar 

  44. Fan SK, Ye JY, Zhang LL, Chen HS, Zhang HH, Zhu YX, Liu XX, Jin CW (2020) Inhibition of DNA demethylation enhances plant tolerance to cadmium toxicity by improving iron nutrition. Plant Cell Environ 43:275–291

    CAS  PubMed  Google Scholar 

  45. Xiong X, Li H, Qiu N, Su L, Huang Z, Song L, Wang J (2020) Bioconcentration and depuration of cadmium in the selected tissues of rare minnow (Gobiocypris rarus) and the effect of dietary mulberry leaf supplementation on depuration. Environ Toxicol Pharm 73:103278

    CAS  Google Scholar 

  46. Rasn R, Rauj M (2018) Nitrate and nitrite content of vegetables: a review. J Pharmacogn Phytochem 7:322–328

    Google Scholar 

  47. Bahadoran Z, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F (2016) Nitrate-nitrite-nitrosamines exposure and the risk of type 1 diabetes: a review of current data. World J Diabetes 7:433–440

    PubMed  PubMed Central  Google Scholar 

  48. Cantwell M, Elliott C (2017) Nitrates, nitrites and nitrosamines from processed meat intake and colorectal cancer risk. J Clin Nutr Diet 3:1–4

    Google Scholar 

  49. Commission Directive (EU) 2015/1787 of 6 October 2015. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01998L0083-20151027&from=EN,%202015. Accessed 13 Apr 2020

  50. Miao LH, Lin Y, Pan WJ, Huang X, Ge XP, Zhou QL, Liu B, Ren MC, Zhang XX, Liang HL, Yu H, Ji K (2018) Comparative transcriptome analysis reveals the gene expression profiling in bighead carp (Aristichthys nobilis) in response to acute nitrite toxicity. Fish Shellfish Immunol 79:244–255

    CAS  PubMed  Google Scholar 

  51. Medeiros R, Lopez B, Sampaio L, Romano L, Rodrigues R (2015) Ammonia and nitrite toxicity to false clownfish Amphiprion ocellaris. Aquac Int 24:985–993

    Google Scholar 

  52. Xing C, Shi Z, Yu M, Wang S (2008) Cationic conjugated polyelectrolyte-based fluorometric detection of copper(II) ions in aqueous solution. Polymer 49:2698–2703

    CAS  Google Scholar 

  53. Ogunfowokan AO, Adekunle AS, Oyebode BA, Oyekunle JAO, Komolafe AO, Omoniyi-Esan GO (2019) Determination of heavy metals in urine of patients and tissue of corpses by atomic absorption spectroscopy. Chem Afr 2:699–712

    CAS  Google Scholar 

  54. Bakırdere S, Yaroğlu T, Tırık N, Demiröz M, Fidan AK, Maruldalı O, Karaca A (2013) Determination of As, Cd, and Pb in tap water and bottled water samples by using optimized GFAAS system with Pd-Mg and Ni as matrix modifiers. J Spectrosc D 1(1). https://doi.org/10.1155/2013/824817

  55. Tareen KA, Sultan NI, Parakulsuksatid Shafi M, Khan A, Khan WM, Hussain S (2014) Detection of heavy metals (Pb, Sb, Al, As) through atomic absorption spectroscopy from drinking water of District Pishin, Baluchistan, Pakistan. Int J Curr Micro Appl Sci 3:299–308

    CAS  Google Scholar 

  56. Abdul B, Attiq-ur-Rehman Samiullah, Naqeebullah K, Hayatullah Abdul B (2020) Physico-chemical and heavy metals analysis of drinking water and their effect on human health: a review. Pure Appl Biol 9(1):587–594

    Google Scholar 

  57. Dimpe KM, Ngila JC, Mabuba N, Nomngongo PN (2014) Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge. Phys Chem Earth 76:42–48

    Google Scholar 

  58. Paredes E, Maestre SE, Prats S, Todolí JL (2006) Simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in foods by high-performance liquid chromatography inductively coupled plasma atomic emission spectrometry. Anal Chem 19:6774–6782

    Google Scholar 

  59. Cengiz MF, Kilic S, Yalcin F, Kilic M, Gurhan Yalcin M (2017) Evaluation of heavy metal risk potential in Bogacayi River water (Antalya, Turkey). Environ Monit Assess 189:248

    PubMed  Google Scholar 

  60. Bajenaru I, Josceanu AM, Guran C, Minca I (2015) Ion chromatographic method for determination of heavy metals in water. Rev Chim Buchar 66:1960–1964

    CAS  Google Scholar 

  61. Gao PF, Zhang XW, Kuang HZ, Li QQ, Li Y (2018) Study on simultaneous determination of Ni, Pb and Cd by ion chromatography. IOP Conf Ser Earth Environ Sci 146:012068

    Google Scholar 

  62. Bosch AC, O’Neill B, Sigge GO, Kerwath SE, Hoffman LC (2016) Heavy metal accumulation and toxicity in smoothhound (Mustelus mustelus) shark from Langebaan Lagoon, South Africa. Food Chem 190:871–878

    CAS  PubMed  Google Scholar 

  63. Werner J (2018) Ionic liquid ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of the aqueous phase for preconcentration of heavy metals ions prior to determination by LC-UV. Talanta 182:69–73

    CAS  PubMed  Google Scholar 

  64. McGaw EA, Swain GM (2006) A comparison of boron-doped diamond thin-film and Hg-coated glassy carbon electrodes for anodic stripping voltammetric determination of heavy metal ions in aqueous media. Anal Chim Acta 575:180–189

    CAS  PubMed  Google Scholar 

  65. Bedin KC, Mitsuyasu EY, Ronix A, Cazetta AL, Pezoti O, Almeida VC (2018) Inexpensive bismuth-film electrode supported on pencil-lead graphite for determination of Pb(II) and Cd(II) ions by anodic stripping voltammetry. Int J Anal Chem 2018. https://doi.org/10.1155/2018/1473706

  66. Adraoui I, Rhazi ME, Amine A (2007) Fibrinogen-coated bismuth film electrodes for voltammetric analysis of lead and cadmium using the batch injection analysis. Anal Lett 40:349–368

    CAS  Google Scholar 

  67. Li J, Li Q, Lu C, Zhao L (2011) Determination of nitrite in tap waters based on fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate and peroxynitrous acid. Analyst 136:2379–2384

    CAS  PubMed  Google Scholar 

  68. Wang X, Adams E, Van Schepdael A (2012) A fast and sensitive method for the determination of nitrite in human plasma by capillary electrophoresis with fluorescence detection. Talanta 97:142–144

    CAS  PubMed  Google Scholar 

  69. Lu L, Chen C, Zhao D, Yang F, Yang X (2015) A simple and sensitive assay for the determination of nitrite using folic acid as the fluorescent probe. Anal Methods 7:1543–1548

    CAS  Google Scholar 

  70. Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens Actuat B 143:539–546

    CAS  Google Scholar 

  71. Hutton EA, Ogorevc B, Hocevar SB, Weldon F, Smyth MR, Wang J (2001) An introduction to bismuth film electrode for use in cathodic electrochemical detection. Electrochem Commun 3:707–711

    CAS  Google Scholar 

  72. Gluck O, Schoning MJ, Luth H, Otto A, Emons H (1999) Trace metal determination by dc resistance changes of microstructured thin gold film electrodes. Electrochim Acta 44:3761–3768

    CAS  Google Scholar 

  73. Xing S, Xu H, Chen J, Shi G, Jin L (2011) Nafion stabilized silver nanoparticles modified electrode and its application to Cr(VI) detection. J Electroanal Chem 652:60–65

    CAS  Google Scholar 

  74. Dong Y, Ding Y, Zho Y, Chen J, Wang C (2014) Differential pulse anodic stripping voltammetric determination of Pb ion at a montmorillonites/polyaniline nanocomposite modified glassy carbon electrode. J Electroanal Chem 717–718:206–212

    Google Scholar 

  75. Bolado PF, Santos DH, Ardisana PJL, Pernia AM, Garcia AC (2008) Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim Acta 53:3635–4364

    Google Scholar 

  76. Shams E, Torabi R (2006) Determination of nanomolar concentrations of cadmium by anodic-stripping voltammetry at a carbon paste electrode modified with zirconium phosphated amorphous silica. Sens Actuators B 117:86–92

    CAS  Google Scholar 

  77. Tang L, Chen J, Zeng G, Zhu Y, Zhang Y, Zhou Y, Xie X, Yang G, Zhang S (2014) Ordered mesoporous carbon and thiolated polyaniline modified electrode for simultaneous determination of cadmium(II) and lead(II) by anodic stripping voltammetry. Electroanalysis 26:2283–2291

    CAS  Google Scholar 

  78. March G, Nguyen TD, Piro B (2015) Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 5:241–275

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Naveen MH, Gurudatt NG, Shim YB (2017) Application of conducting polymer composites to electrochemical sensors: a review. Appl Mater Today 9:419–433

    Google Scholar 

  80. Lu Y, Liang X, Niyungeko C, Zhou J, Xu J, Tian G (2018) A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 178:324–338

    CAS  PubMed  Google Scholar 

  81. Bansod B, Kumar T, Thakur R, Rana S, Singh I (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens Bioelectron 94:443–455

    CAS  PubMed  Google Scholar 

  82. Wei Y, Yang R, Liu JH, Huang XJ (2013) Selective detection toward Hg(II) and Pb(II) using polypyrrole/carbonaceous nanospheres modified screen-printed electrode. Electrochim Acta 105:218–223

    CAS  Google Scholar 

  83. Seenivasan R, Chang W-J, Gunasekaran S (2015) Highly sensitive detection and removal of lead ions in water using cysteine-functionalized graphene oxide/polypyrrole nanocomposite film electrode. ACS Appl Mater Interfaces 7:15935–15943

    CAS  PubMed  Google Scholar 

  84. Muralikrishna S, Nagaraju DH, Balakrishna RG, Surareungchai W, Ramakrishnappa T, Shivanandareddy AB (2017) Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions. Anal Chim Acta 990:67–77

    CAS  PubMed  Google Scholar 

  85. Rahman MA, Won MS, Shim YB (2003) Characterization of an EDTA bonded conducting polymer modified electrode: its application for the simultaneous determination of heavy metal ions. Anal Chem 75:1123–1129

    CAS  PubMed  Google Scholar 

  86. Philips MF, Gopalan AI, Lee K-P (2012) Development of a novel cyano group containing electrochemically deposited polymer film for ultrasensitive simultaneous detection of trace level cadmium and lead. J Hazard Mater 237–238:46–54

    PubMed  Google Scholar 

  87. Huang H, Zhu W, Gao X, Liu X, Ma H (2016) Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions. Anal Chim Acta 947:32–41

    CAS  PubMed  Google Scholar 

  88. Locatelli C (2010) Mutual interference problems in the simultaneous voltammetric determination of trace total mercury(II) in presence of copper(II) at gold electrode. Applications to environmental matrices. Anal Methods 2:1784–1791

    CAS  Google Scholar 

  89. Salaün P, van den Berg CMG (2006) Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal Chem 78:5052–5060

    PubMed  Google Scholar 

  90. Xiong W, Zhou L, Liu S (2016) Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb(II) and Cu (II). Chem Eng J 284:650–656

    CAS  Google Scholar 

  91. Zhang W, Fan S, Li X, Liu S, Duan D, Leng L, Cui C, Qu L (2019) Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Microchim Acta 187:69

    Google Scholar 

  92. Bonfil Y, Brand M, Kirowa-Eisner E (2002) Characteristics of subtractive anodic stripping voltammetry of Pb and Cd at silver and gold electrodes. Anal Chim Acta 464:99–114

    CAS  Google Scholar 

  93. Promphet N, Rattanarat P, Rangkupan R, Chailapakul O, Rodthongkum N (2015) An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sens Actuators B 207:526–534

    CAS  Google Scholar 

  94. Zhu G, Ge Y, Dai Y, Shang X, Yang J, Liu J (2018) Size-tunable polyaniline nanotube-modified electrode for simultaneous determination of Pb(II) and Cd(II). Electrochim Acta 268:202–210

    CAS  Google Scholar 

  95. Wang Z, Liu E, Zhao X (2011) Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution. Thin Solid Films 519:5285–5289

    CAS  Google Scholar 

  96. Chen L, Li Z, Meng Y, Zhang P, Su Z, Liu Y, Huang Zhou Y, Xie Q, Yao S (2014) Sensitive square wave anodic stripping voltammetric determination of Cd2+ and Pb2+ ions at Bi/Nafion/overoxidized 2-mercaptoethanesulfonate-tethered polypyrrole/glassy carbon electrode. Sens Actuators B 191:94–101

    CAS  Google Scholar 

  97. Yu Z, Jamal R, Zhang R, Zhang W, Yan Y, Liu Y, Ge Y, Abdiryim T (2020) PEDOT-type conducting polymers/black TiO2 composites for electrochemical determination of Cd2+ and Pb2+. J Electrochem Soc 167:067514

    CAS  Google Scholar 

  98. Chen L, Su Z, He X, Liu Y, Qin C, Zhou Y, Zhou Y, Li Z, Wang L, Xie Q, Yao S (2012) Square wave anodic stripping voltammetric determination of Cd and Pb ions at a Bi/Nafion/thiolated polyaniline/glassy carbon electrode. Electrochem Commun 15:34–37

    Google Scholar 

  99. Lo M, Diaw AKD, Gningue-Sall D, Aaron J-J, Oturan MA, Chehimi MM (2018) Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes. Environ Sci Pollut Res 25:20012–20022

    CAS  Google Scholar 

  100. Jena BK, Raj CR (2008) Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper. Anal Chem 80:4836–4844

    CAS  PubMed  Google Scholar 

  101. Gao XH, Wei WZ, Yang L, Yin TJ, Wang Y (2005) Simultaneous determination of lead, copper, and mercury free from macromolecule contaminants by square wave stripping voltammetry. Anal Lett 38:2327–2343

    CAS  Google Scholar 

  102. De Barros A, Constantino CJL, Bortoleto JRR, Da Cruz NC, Ferreira M (2016) Incorporation of gold nanoparticles into Langmuir–Blodgett films of polyaniline and montmorillonite for enhanced detection of metallic ions. Sens Actuators B 236:408–417

    Google Scholar 

  103. Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal Chim Acta 874:40–48

    CAS  PubMed  Google Scholar 

  104. Alves GMS, Magalhães JMCS, Salaün P, van den Berg CMG, Soares HMVM (2011) Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode. Anal Chim Acta 703:1–7

    CAS  PubMed  Google Scholar 

  105. Rong R, Zhao HM, Gan XR, Chen S, Quan X (2017) An electrochemical sensor based on graphene-polypyrrole nanocomposite for the specific detection of Pb(II). NANO 12:1750008

    CAS  Google Scholar 

  106. Rehman AU, Ikram M, Kan K, Zhao YM, Zhang WJ, Zhang JW, Liu Y, Wang Y, Du LJ, Shi KY (2018) 3D interlayer nanohybrids composed of reduced grapheme scheme oxide/SnO2/PPy grown from expanded graphite for the detection of ultra-trace Cd2+, Cu2+, Hg2+ and Pb2+ ions. Sens Actuators B 274:285–295

    CAS  Google Scholar 

  107. Oularbi L, Turmine M, El Rhazi M (2017) Electrochemical determination of traces lead ions using a new nanocomposite of polypyrrole/carbon nanofibers. J Solid State Electrochem 21:3289–3300

    CAS  Google Scholar 

  108. Wang Y, Wang L, Huang W, Zhang T, Hu X, Perman JA, Ma S (2017) A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J Mater Chem A 5:8385–8393

    CAS  Google Scholar 

  109. Buica GO, Lazar IG, Saint-Aman E, Tecuceanu V, Dumitriu C, Anton IA, Stoian AB, Ungureanu EM (2017) Ultrasensitive modified electrode based on poly(1H-pyrrole-1-hexanoic acid) for Pb(II) detection. Sens Actuators B 246:434–443

    CAS  Google Scholar 

  110. Salih FE, Ouarzane A, El Rhazi M (2017) Electrochemical detection of lead (II) at bismuth/poly(1,8-diaminonaphthalene) modified carbon paste electrode. Arabian J Chem 10:596–603

    CAS  Google Scholar 

  111. Yilong Z, Dean Z, Daoliang L (2015) Electrochemical and other methods for detection and determination of dissolved nitrite: a review. Int J Electrochem Sci 10:1144–1168

    Google Scholar 

  112. Xiao Q, Feng M, Liu Y, Lu S, He Y, Huang S (2018) The graphene/polypyrrole/chitosan-modified glassy carbon electrode for electrochemical nitrite detection. Ionics 24:845–859

    CAS  Google Scholar 

  113. Arulraj AD, Sundaram E, Vasantha VS, Neppolian B (2018) Polypyrrole with a functionalized multi-walled carbon nanotube hybrid nanocomposite: a new and efficient nitrite sensor. New J Chem 42:3748–3757

    CAS  Google Scholar 

  114. Wang J, Hui N (2017) A nanocomposite consisting of flower-like cobalt nanostructures, graphene oxide and polypyrrole for amperometric sensing of nitrite. Microchim Acta 184:2411–2418

    CAS  Google Scholar 

  115. Rajesh S, Kanugula AK, Bhargava K, Ilavazhagan G, Kotamraju S, Karunakaran C (2010) Simultaneous electrochemical determination of superoxide anion radical and nitrite using Cu, ZnSOD immobilized on carbon nanotube in polypyrrole matrix. Biosens Bioelectron 26:689–695

    CAS  PubMed  Google Scholar 

  116. Sahooa S, Sahoo PK, Sharma A, Satpatia AK (2020) Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sens Actuators B 309:127763

    Google Scholar 

  117. Diarisso A, Fall M, Raouafi N (2018) Elaboration of a chemical sensor based on polyaniline and sulfanilic acid diazonium salt for highly sensitive detection nitrite ions in acidified aqueous media. Environ Sci Water Res Technol 4:1024–1034

    CAS  Google Scholar 

  118. Liu L, Cui H, An H, Zhai J, Pan Y (2017) Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics 23:1517–1523

    CAS  Google Scholar 

  119. Muchindu M, Waryo T, Arotiba O, Kazimierska E, Morrin A, Killard AJ, Smyth MR, Jahed N, Kgarebe B, Baker PGL, Iwuoha EI (2010) Electrochemical nitrite nanosensor developed with amine- and sulphate functionalised polystyrene latex beads self-assembled on polyaniline. Electrochim Acta 55:4274–4280

    CAS  Google Scholar 

  120. Guo M, Chen J, Li J, Tao B, Yao S (2005) Fabrication of polyaniline/carbon nanotube composite modified electrode and its electrocatalytic property to the reduction of nitrite. Anal Chim Acta 532:71–77

    CAS  Google Scholar 

  121. Jiao M, Li Z, Li Y, Cui M, Luo X (2018) Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Microchim Acta 185:249

    Google Scholar 

  122. Gligor D, Cuibus F, Peipmann R, Bund A (2017) Novel amperometric sensors for nitrite detection using electrodes modified with PEDOT prepared in ionic liquids. J Solid State Electrochem 21:281–290

    CAS  Google Scholar 

  123. Wang G, Han R, Feng X, Li Yinan, Lin J, Luo X (2017) A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim Acta 184:1721–1727

    CAS  Google Scholar 

  124. Lin P, Chai F, Zhang R, Zhang R, Xu G, Fan X (2016) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183:235–1241

    Google Scholar 

  125. Wang Junjie, Guiyun Xu, Wang Wei, Shenghao Xu, Luo Xiliang (2015) Nitrite oxidation with copper–cobalt nanoparticles on carbon nanotubes doped conducting polymer PEDOT composite. Chem Asian J 10:1892–1897

    CAS  PubMed  Google Scholar 

  126. Zhang O, Wen Y, Xu J, Lu L, Duan X, Yu H (2013) One-step synthesis of poly(3,4-ethylenedioxythiophene)-Au composites and their application for the detection of nitrite. Synth Met 164:47–51

    CAS  Google Scholar 

  127. Eguilaz M, Agui L, Yanez-Sedeno P, Pingarron J (2010) A biosensor based on cytochrome c immobilization on a poly-3-methylthiophene/multi-walled carbon nanotubes hybrid-modified electrode. Application to the electrochemical determination of nitrite. J Electroanal Chem 644:30–35

    CAS  Google Scholar 

  128. Dai J, Deng D, Yuan Y, Zhang J, Deng F, He S (2016) Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Microchim Acta 183(1553–1561):37

    Google Scholar 

  129. Rajalakshmi K, John SA (2015) Highly sensitive determination of nitrite using FMWCNTs-conducting polymer composite modified electrode. Sens Actuators B 215:119–124

    CAS  Google Scholar 

  130. Kuralay F, Dumangöz M, Tunç S (2015) Polymer/carbon nanotubes coated graphite surfaces for highly sensitive nitrite detection. Talanta 144:133–1138

    Google Scholar 

Download references

Acknowledgements

The Tunisian Ministry of Higher Education and Scientific Research (Lab. LR99ES15) and the Tunisian PRF program for financial support (NanoFastResponse ref. PRF2017-D4P1 and SmartBioSens ref. PRFCOV19-D2P2) are gratefully acknowledged. The authors are grateful to the International Science Program (ISP), University of Uppsala (Sweden) for its financial support through the African Network of Electroanalytical Chemists (ANEC) and to TWAS, the World Academy of Science for the Advancement of Science in developing countries for financial and material support (TWAS RGA no. 16-499RG/CHE/AF/AC_G–FR3240293299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modou Fall.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sall, M.L., Fall, B., Diédhiou, I. et al. Toxicity and Electrochemical Detection of Lead, Cadmium and Nitrite Ions by Organic Conducting Polymers: A Review. Chemistry Africa 3, 499–512 (2020). https://doi.org/10.1007/s42250-020-00157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00157-0

Keywords

Navigation