Skip to main content
Log in

Recycling Scrap from Un-Irradiated Nuclear Fuel by HNO3 Leaching

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The work describes the wet chemical route process to recover and recycle a defective un-irradiated uranium dioxide sintered pellets. The optimal conditions of the un-irradiated UO2 sintered pellets dissolution in Nitric acid solutions has been examined. The effects of acid concentration, contact time and temperature on dissolution action have been studied. The samples were exposed to leaching over a range of nitric acid concentrations 2–8 mol/L and temperatures from 20 to 70 °C. The stoichiometry of the dissolution reaction depends on the acidity of the solution. The shrinking core model (product diffusion control model and chemical reaction control model) was used to correlate the experimental results. Kinetics study shows that the chemical reaction model controls the dissolution of UO2 sintered pellets in nitric acid solution. The average value of apparent activation energy estimated from the temperature effect of the chemical reaction was found to be about 101.40 kJ/mol. The optimal conditions to dissolve the UO2 sintered pellets in nitric acid solution have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Valdivieso F, Francon V, Byasson F, Pijolat M, Feugier A, Peres V (2006) J Nucl Mater 354:85–93

    Article  CAS  Google Scholar 

  2. Mc Eachern RJ, Taylor P (1998) J Nucl Mater 254:87–121

    Article  CAS  Google Scholar 

  3. Bae KK, Kim BG, Lee YW, Yang MS, Park HS (1994) J Nucl Mater 209:274–279

    Article  CAS  Google Scholar 

  4. Schwartz I (1979) J Nucl Mater 82:54–59

    Article  CAS  Google Scholar 

  5. Kayla HY, Keyou SM, Janelle P, Wharry D, Marshall P (2018) Prog Nucl Energy 108:474–479

    Article  Google Scholar 

  6. Ahn TM (2016) Prog Nucl Energy 93:343–350

    Article  CAS  Google Scholar 

  7. Shoesmith D (2000) J Nucl Mater 282:1–31

    Article  CAS  Google Scholar 

  8. Thomas GF, Till G (1984) Nucl Chem Waste Manag 5:141–147

    Article  CAS  Google Scholar 

  9. Akihiko I (1986) J of Nuc Mat 138:152–154

    Article  Google Scholar 

  10. Casella A, Hanson B, Miller W (2019) J Nucl Mater 476:45–55

    Article  Google Scholar 

  11. Cera E, Bruno J, Quiñones J, Martínez-Esparza A, Clarens F, de Pablo J, Casas I, Giménez J, Rovira M, Merino J (2005) J Nucl Mater 345:225–231

    Article  Google Scholar 

  12. Homma S, Koga J, Matsumoto S, Kawata T (1993) J Nucl Sci Technol 30:959–961

    Article  Google Scholar 

  13. Ikeda Y, Yasuike Y, Nishimura K, Hasegawa S, Mason Ch, Bush R, Takashima Y (1999) J Nucl Sci Technol 36:358–363

    Article  CAS  Google Scholar 

  14. Pierce EM, Icenhower JP, Serne RJ, Catalano JG (2015) J Nucl Mater 345:206–218

    Article  Google Scholar 

  15. Singh G, Singhal RK, Malav RK, Fulzele A, Prakash A, Afzal M, Panakkal JP (2011) Anal Methods 3:622

    Article  CAS  Google Scholar 

  16. Cordara T, Szenknect S, Claparede L, Podor R, Mesbah A, Lavalette C, Dacheux N (2017) J Nucl Mater 496:251–264

    Article  CAS  Google Scholar 

  17. Clarens F, de Pablo J, Casas I, Giménez J, Rovira M, Merino J, Cera E, Bruno J, Quiñones J, Martínez-Esparza A (2005) J Nucl Mater 345:225–231

    Article  CAS  Google Scholar 

  18. Desigan N, Augustine E, Murali R, Pandey NK, Kamachi Mudali U, Natarajan R, Joshi JB (2015) Prog Nucl Energy 83:52–58

    Article  CAS  Google Scholar 

  19. Thomas GF, Grenville T (1984) Nucl Chem Waste Manag 5:141–214

    Article  CAS  Google Scholar 

  20. Sakurai T, Takahashi A, Ishikawa N, Komaki Y (1998) Nucl Tech 83:24–30

    Article  Google Scholar 

  21. Fukasawa T, Ozawa Y, Kawamura F (1991) Nucl Tech 94:108–113

    Article  Google Scholar 

  22. Taylor RF, Sharratt EW, de Chazal LEM, Logsdail DH (1963) J Appl Chem 13:32–40

    Article  CAS  Google Scholar 

  23. Korichi S, Mernache F, Benaouicha F, Aoudia N, Amrane A, Hadji S (2017) J Radioanal Nucl Chem 314:923–934

    Article  CAS  Google Scholar 

  24. Atef Eliwa A (2017) J Radioanal Nucl Chem 312:1–11

    Article  Google Scholar 

  25. Safari V, Arzpeyma G, Rashchi F, Mostouf N (2009) Int J Miner Process 93:79–83

    Article  CAS  Google Scholar 

  26. Mgaidi F, Oulahna D, El Maaoui M, Dodds JA (2004) Hydrometallurgy 71:435–446

    Article  CAS  Google Scholar 

  27. Veglio F, Trifoni M, Pagnanelli F, Toro L (2001) Hydrometallurgy 60:167–179

    Article  CAS  Google Scholar 

  28. Ferrier RJ, Cai L, Lin Q, Gorman GJ, Neethling SJ (2016) Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2016.08.007

    Article  Google Scholar 

  29. Keshtkar AR, Abbasizadeh S (2016) Prog Nucl Energy 93:362–370

    Article  CAS  Google Scholar 

  30. Khan MH, Warwick P, Evans N (2006) Chemosphere 63:1165–1169

    Article  CAS  Google Scholar 

  31. Shabbir M, Robins RG (1969) J Appl Chem 19:52–56

    Article  CAS  Google Scholar 

  32. Pierce R (2004) https://doi.org/10.2172/821176

  33. Mineo H, Isogai H, Morita Y, Uchiyama G (2004) J Nucl Sci Technol 41:126–134

    Article  CAS  Google Scholar 

  34. Sicsic D (2011) PhD Thesis, Université Pierre et Marie Curie

  35. Glatz JP, Bokelund H, Zierfuß S (1990) Radiochim Acta 51:17

    Article  CAS  Google Scholar 

  36. Briggs A (1961) Ceram Br Trans J 60:505

    CAS  Google Scholar 

  37. Inoue A (1986) J Nucl Mater 138:152

    Article  CAS  Google Scholar 

  38. Wada Y, Morimoto K, Tomiyashu H (1996) Radiochim Acta 72:83

    CAS  Google Scholar 

  39. Zhao Y, Chen J (2008) J Nucl Mater 373:53

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korichi Smain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smain, K., Hanane, B. & Nacera, A. Recycling Scrap from Un-Irradiated Nuclear Fuel by HNO3 Leaching. Chemistry Africa 3, 343–350 (2020). https://doi.org/10.1007/s42250-020-00134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00134-7

Keywords

Navigation