Skip to main content
Log in

Synthesis of CaO–Ag-NPs @CaCO3 Nanocomposite via Impregnation of Aqueous Sol Ag-NPs onto Calcined Calcium Oxalate

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this research CaO–Ag-NPs @CaCO3 nanocomposite was prepared by treatment of calcined calcium oxalate [CaO, Ca(OH)2 and CaCO3] with sol of silver nanoparticles (Ag-NPs). Several techniques were used to investigate the structural properties of CaO–Ag-NPs@CaCO3 nanocomposite including FTIR, UV/VIS, XRD, TEM and TGA. XRD and TEM and UV/VIS results showed that silver nanoparticles incorporated with calcium oxide (CaO–Ag-NPs) are incorporated with calcium carbonate (CaO–Ag-NPs@CaCO3). It is confirmed that the CaO–Ag-NPs @CaCO3 nanocomposite showed strong antimicrobial activity against Escherichia coli, and Staphylococcus aurous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Roy P, Bharali P, Konwar BK, Karak N (2013) Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials. Bioresour Technol 127:175–180. https://doi.org/10.1016/j.biortech.2012.09.129

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Q, Yin JJ, Liu F, Zou XN, Qian L (2017) Immobilization of silver nanoparticles into POEGMA polymer brushes as SERS-active substrates. Surf Interface Anal 49:316–322. https://doi.org/10.1002/sia.6137

    Article  CAS  Google Scholar 

  3. Koichi A, Fujimaki M, Rockstuhl C (2008) Aplasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130:1676–1680. https://doi.org/10.1021/ja076503n

    Article  CAS  Google Scholar 

  4. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent, microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110. https://doi.org/10.1016/j.ijantimicag.2009.01.017

    Article  CAS  PubMed  Google Scholar 

  5. Apalangya V, Rangari V, Tiimob B, Jeelani S, Samuel T (2014) Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl Surf Sci 295:108–114. https://doi.org/10.1016/japsusc.2014.01.012

    Article  CAS  Google Scholar 

  6. Agnihotri S, Bajaj G, Mukherji S, Mukherji S (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7:7415–7429. https://doi.org/10.1039/c4nr06913g

    Article  CAS  PubMed  Google Scholar 

  7. Zienkiewicz-Strzałka M, Błachnio M, Deryło-Marczewska A, Kozakevych RB, Bolbukh YM, Tertykh VA (2017) Silver nanoparticles deposited on pyrogenic silica solids: preparation and textural properties. Adsorpt Sci Technol 35:714–720. https://doi.org/10.1177/0263617417707599

    Article  CAS  Google Scholar 

  8. Mayer ABR, Grebner W, Wannemacher R (2000) Preparation of silver-latex composites. J Phys Chem B 104:7278–7285. https://doi.org/10.1021/jp000568u

    Article  CAS  Google Scholar 

  9. Benetti EM, Sui X, Zapotoczny S, Vancso GJ (2010) Surface-grafted gel-brush/metal, nanoparticle hybrids. Adv Funct Mater 20:939–944. https://doi.org/10.1002/adfm.200902114

    Article  CAS  Google Scholar 

  10. Babonneau D, Cabioch T, Naudon A, Girard JC, Denanot MF (1998) Silver nanopar-ticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite. Surf Sci 409:358–371. https://doi.org/10.1016/S0039-6028(98)00280-5

    Article  CAS  Google Scholar 

  11. Mirkhalaf F, Paprotny J, Schiffrin DJ (2006) Synthesis of metal nanoparticles, stabilized by metal–carbon bonds. J Am Chem Soc 128:7400–7401. https://doi.org/10.1021/ja058687g

    Article  CAS  PubMed  Google Scholar 

  12. Drmosh QA, Gondal MA, Amani ZHY, Saleh TA (2010) Spectroscopic, characterization approach to study surfactants effect on ZnO2 nanoparticles synthesis by, laser ablation process. Appl Surf Sci 256:4661–4666. https://doi.org/10.1016/j.apsusc.2010.02.068

    Article  CAS  Google Scholar 

  13. Xu C, Wang X (2012) Graphene oxide-mediated synthesis of stable metal nanoparticle, colloids. Colloids Surf A Physicochem Eng Aspects 404:78–82. https://doi.org/10.1016/j.colsurfa.2012.04.017

    Article  CAS  Google Scholar 

  14. Tang B, Wang J, Xu S, Afrin T, Xu W, Sun L, Wang X (2011) Application of anisotropic, silver nanoparticles: multifunctionalization of wool fabric. J Colloid Interf Sci. 356:513–518. https://doi.org/10.1016/j.jcis.2011.01.054

    Article  CAS  Google Scholar 

  15. Wang J, Wen L, Wang Z, Chen J (2006) Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater Chem Phys 96:90–97. https://doi.org/10.1016/j.matchemphys.2005.06.045

    Article  CAS  Google Scholar 

  16. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188. https://doi.org/10.1007/s13204-012-0080-1

    Article  CAS  Google Scholar 

  17. Perkas N, Amirian G, Applerot G, Efendiev E, Kaganovskii Y, Ghule AV, Chen BJ, Ling YC, Gedanken A (2008) Depositing silver nanoparticles on/in a glass slide by the sonochemical method. Nanotechnology. 19:435604. https://doi.org/10.1088/0957-4484/19/43/435604

    Article  CAS  PubMed  Google Scholar 

  18. Moritz M, Geszke-Moritz M (2013) The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596–613. https://doi.org/10.1016/j.cej.2013.05.046

    Article  CAS  Google Scholar 

  19. Lv Y, Liu H, Wang Z, Hao L, Liu J, Wang Y, Du G, Liu D, Zhan J, Wang J (2008) Antibiotic glass slide coated with silvernanoparticles and its antimicrobial capabilities. Polym Adv Technol 19:1455–1460. https://doi.org/10.1002/pat.1138

    Article  CAS  Google Scholar 

  20. Tang B, Wang J, Xu S, Afrin T, Xu W, Sun L, Wang X (2011) Application of anisotropic silver nanoparticles: multifunctionalization of wool fabric. J Colloid Interface Sci 356:513–518. https://doi.org/10.1016/j.jcis.2011.01.054

    Article  CAS  PubMed  Google Scholar 

  21. Długosz M, Bulwan M, Kania G, Nowakowska M, Zapotoczny S (2012) Hybrid calcium carbonate/polymer microparticles containing silver nanoparticles as antibacterial agents. J Nanopart Res 14:1313–1317. https://doi.org/10.1007/s11051-012-1313-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sahoo PC, Kausar F, Lee JH, Han JI (2014) Facile fabrication of silver nanoparticle embedded CaCO3 microspheres via microalgae-templated CO2 biomineralization: application in antimicrobial paint development. RSC Adv 4:32562–32569. https://doi.org/10.1039/c4ra03623a

    Article  CAS  Google Scholar 

  23. Kamyshinsky R, Marchenko I, Parakhonskiy B, Yashchenok A, Chesnokov Y, Mikhutkin A, Bukreeva T (2019) Composite materials based on Ag nanoparticles in situ synthesized on the vaterite porous matrices. Nanotechnology. 30(3):035603. https://doi.org/10.1088/1361-6528/aaea38

    Article  CAS  PubMed  Google Scholar 

  24. Markina NE, Markin AV, Zakharevich AM, Goryacheva IY (2017) Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction. Microchim Acta 184:3937–3944

    Article  CAS  Google Scholar 

  25. Jayshree A, Thangaraju N (2016) Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Appl Nanosci. 6:259–265. https://doi.org/10.1007/s13204-015-0426-6

    Article  CAS  Google Scholar 

  26. Lkhagvajav N, Yasa I, Celik E, Koizhaiganova M, Sari Ö (2011) Antimicrobial Activity of colloidal silver nanoparticles prepared by sol-gel method. Digest J Nanomater Biostruct 6:149–154

    Google Scholar 

  27. Helal GA, Sarhan MM, Abu-Shahla ANK, Abou-El-Khair EK (2006) Effect of Cymbopogon citratus L. essential oil on the growth and morphogenesis of Saccharomyces cerevisiae ML2-strain. J Basic Microbiol 46:357–386. https://doi.org/10.1002/jobm.200510084

    Article  CAS  Google Scholar 

  28. Navarro V, Villareal ML, Rojas G, Lozoya X (1996) Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. J Ethnopharmacol 53:143–147. https://doi.org/10.1016/0378-8741(96),01429-8

    Article  CAS  PubMed  Google Scholar 

  29. Mirghiasi Z, Bakhtiari F, Darezereshki E, Esmaeilzadeh E (2014) Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. J Ind Eng Chem 20:113–117. https://doi.org/10.1016/j.jiec.2013.04.018

    Article  CAS  Google Scholar 

  30. Yang H, Xu R, Xue X, Li F, Li G (2008) Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. J Hazard Mater 152:690–698. https://doi.org/10.1016/j.jhazmat.2007.07.060

    Article  CAS  PubMed  Google Scholar 

  31. Miguel G, Juan H, Leticia B, Joaquin N, Mario ERG (2009) Characterization of calcium carbonate, calcium oxide and calcium hydroxide as starting point to the improvement of lime for their use in construction. J Mater Civ Eng 21:625–708

    Article  Google Scholar 

  32. Imtiaz A, Akhyar FM, Khaleeq-ur-rahman M, Adnan R (2013) Micelle-assisted synthesis of Al2O3 CaO nanocatalyst: optical properties and their applications in photodegradation of 2,4,6-trinitrophenol. Sci World J 2013:11

    Article  Google Scholar 

  33. Stutzman PE (1996) Guide for X-ray powder diffraction analysis of Portland cement and clinker. US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Office of Applied Economics, Building and Fire Research Laboratory

  34. Zhang S (2014) Anew nano-sized calcium hydroxide photocatalytic material for the photodegradation of organic dyes. RSC Adv 4:15835–15840. https://doi.org/10.1039/c4ra00081a

    Article  CAS  Google Scholar 

  35. Kim D, Jeong S, Moon J (2006) Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology. 17:4019–4024. https://doi.org/10.1088/0957-4484/17/16/004

    Article  CAS  PubMed  Google Scholar 

  36. Won YH, Jang HS, Chung DW, Stanciu LA (2010) Multifunctional calcium carbonate microparticles: synthesis and biological applications. J. Mater. Chem. 20:728–733. https://doi.org/10.1039/C0JM01231A

    Article  Google Scholar 

  37. Ingle A, Gade A, Pierrat S, Sonnichsen RM (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. https://doi.org/10.2174/157341308784340804

    Article  CAS  Google Scholar 

  38. Morones JR, Elechiguerra LJ, Camacho A, Holt K, Kouri BJ, Ramirez TJ, Yocaman JM (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks for chemistry department of Al Azhar University-Gaza for their financial funds and support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawzi S. Kodeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodeh, F.S., El-Nahhal, I.M., Elkhair, E.A. et al. Synthesis of CaO–Ag-NPs @CaCO3 Nanocomposite via Impregnation of Aqueous Sol Ag-NPs onto Calcined Calcium Oxalate. Chemistry Africa 3, 679–686 (2020). https://doi.org/10.1007/s42250-019-00112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00112-8

Keywords

Navigation