Skip to main content
Log in

Facile Efficient Synthesis of New Alkoxymethylphosphonium Tetrafluoroborates; Valuable Alternative to Their Halide Analogues

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A facile, efficient and general synthesis of a broad range of structurally variant alkoxymethylphosphonium tetrafluoroborates (2ae) is described. The reaction involves the triphenylphosphination of bis-alkoxy methanes in the presence of ethereal boron trifluoride at room temperature. Application of these new salts to carbon homologation of aldehydes is also studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Maryanoff BE, Reitz AB (1989) The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem Rev 89(4):863–927

    Article  CAS  Google Scholar 

  2. Effenberger F, Meller P, Ringsdorf H, Schlosser H (1991) Properties of amphiphilic terminally substituted conjugated nonaene-and 2-docosylnonaene carboxylic acids in monolayers at the air-water interface. Adv Mater 3(11):555–558

    Article  CAS  Google Scholar 

  3. Kolodiazhnyi OI (1996) C-element-substituted phosphorus yelids. Tetrahedron 52(6):1855–1929

    Article  CAS  Google Scholar 

  4. Hwang LK, Na Y, Lee J, Do Y, Chang S (2005) Tetraarylphosphonium halides as arylating reagents in Pd-catalyzed heck and cross-coupling reactions. Angew Chem Int Ed 44(38):6166–6169

    Article  CAS  Google Scholar 

  5. Deng Z, Lin JH, Xiao JC (2016) Nucleophilic arylation with tetraarylphosphonium salts. Nat Commun 7:10337

    Article  Google Scholar 

  6. Szymczyk M (2017) Unexpected course of Wittig reaction when using cinnamyl aldehyde as a substrate. Phosphorus Sulfur Silicon Relat Elem 192(3):264–266

    Article  CAS  Google Scholar 

  7. Roy MN, Poupon JC, Charette AB (2009) Tetraarylphosphonium salts as soluble supports for oxidative catalysts and reagents. J Org Chem 74(22):8510–8515

    Article  CAS  Google Scholar 

  8. Cao H, McNamee L, Alper H (2008) Palladium-catalyzed thiocarbonylation of iodoarenes with thiols in phosphonium salt ionic liquids. J Org Chem 73(9):3530–3534

    Article  CAS  Google Scholar 

  9. Winkel A, Reddy PVG, Wilhelm R (2008) Recent advances in the synthesis and application of chiral ionic liquids. Synthesis 07:999–1016

    Google Scholar 

  10. McNulty J, Cheekoori S, Bender TP, Coggan JA (2007) A pronounced anionic effect in the Pd-catalyzed Buchwald–Hartwig amination reaction revealed in phosphonium salt ionic liquids. Eur J Org Chem 9:1423–1428

    Article  Google Scholar 

  11. Zurawinski R, Donnadieu B, Mikolajczyk M, Chauvin R (2004) Palladium complexes of a chiral P, C-chelating phosphino-(sulfinylmethyl) phosphonium ylide ligand. J Organomet Chem 689(2):380–386

    Article  CAS  Google Scholar 

  12. Ohta T, Sasayama H, Nakajima O, Kurahashi N, Fujii T, Furukawa I (2003) Asymmetric allylic substitution catalyzed by palladium—Yliphos complex. Tetrahedron Asymmetry 14(5):537–542

    Article  CAS  Google Scholar 

  13. Leglaye P, Donnadieu B, Brunet JJ, Chauvin R (1998) Methyldiopium and methylbinapium, chiral phosphonium-phosphine ligands. Tetrahedron Lett 39(50):9179–9182

    Article  CAS  Google Scholar 

  14. Laleu B, Bernardinelli G, Chauvin R, Lacour J (2006) Trimesitylmethylphosphonium cation. Supramolecular stereocontrol and simple enantiomerization mechanism determination. J Org Chem 71(19):7412–7416

    Article  CAS  Google Scholar 

  15. Hamdi A, Nam KC, Ryu BJ, Kim JS, Vicens J (2004) Anion complexation. A ditriphenylphosphonium calix[4]arene derivative as a novel receptor for anions. Tetrahedron Lett 45(24):4689–4692

    Article  CAS  Google Scholar 

  16. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Using deep eutectic solvents based on methyltriphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels 25(6):2671–2678

    Article  CAS  Google Scholar 

  17. Kareem MA, Mjalli FS, Hashim MA, AlNashef IM (2010) Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data 55(11):4632–4637

    Article  CAS  Google Scholar 

  18. Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13(1):82–90

    Article  CAS  Google Scholar 

  19. Zhang Q, Vigier KDO, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146

    Article  CAS  Google Scholar 

  20. Russell MG, Warren S (1998) Wittig reactions in water. Synthesis of new water-soluble phosphonium salts and their reactions with substituted benzaldehydes. Tetrahedron Lett 39(43):7995–7998

    Article  CAS  Google Scholar 

  21. Su Q, Panek JS (2005) Total synthesis of (+)-leucascandrolide A. Angew Chem In Ed 44(8):1223–1225

    Article  CAS  Google Scholar 

  22. Kong K, Moussa Z, Lee C, Romo D (2011) Total synthesis of the spirocyclic imine marine toxin (−)-gymnodimine and an unnatural C4-epimer. J Am Chem Soc 133(49):19844–19856

    Article  CAS  Google Scholar 

  23. Spallarossa M, Wang Q, Riva R, Zhu J (2016) Synthesis of vinyl isocyanides and development of a convertible isonitrile. Org Lett 18(7):1622–1625

    Article  CAS  Google Scholar 

  24. Wiebe DA, Burton DJ (2012) Chemoselective halogenation of 2-hydroperfluoroalkyl aldehydes. J Fluorine Chem 139:4–11

    Article  CAS  Google Scholar 

  25. Hayakawa I, Teruya T, Kigoshi H (2006) Revised structure of zamamistatin. Tetrahedron Lett 47(2):155–158

    Article  CAS  Google Scholar 

  26. Gentile G, Di Fabio R, Pavone F, Sabbatini FM, St-Denis Y, Zampori MG, Worby A (2007) Novel substituted tetrahydrotriazaacenaphthylene derivatives as potent CRF 1 receptor antagonists. Bioorg Med Chem 17(18):5218–5221

    Article  CAS  Google Scholar 

  27. Kerschgens IP, Claveau E, Wanner MJ, Ingemann S, vanMaarseveen JH, Hiemstra H (2012) Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction. Chem Commun 48(100):12243–12245

    Article  CAS  Google Scholar 

  28. Saedi M, Mojtahedi MM, Kaamyabi S (2000) Application of microwave irradiation techniques for the Witting reaction. J Sci Iran 11:21

    Google Scholar 

  29. Mangold SL, Carpenter RT, Kiessling LL (2008) Synthesis of fluorogenic polymers for visualizing cellular internalization. Org Lett 10(14):2997–3000

    Article  CAS  Google Scholar 

  30. Montchamp JL (2013) Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc Chem Res 47(1):77–87

    Article  Google Scholar 

  31. Lambert WT, Burke SD (2003) Halichondrin B: synthesis of a C1–C14 Model via desymmetrization of (+)-conduritol E. Org Lett 5(4):515–518

    Article  CAS  Google Scholar 

  32. Li Y, Zhang Q, Wittlin S, Jin HX, Wu Y (2009) Synthesis and in vitro antimalarial activity of spiro-analogues of peroxyplakoric acids. Tetrahedron 65(34):6972–6985

    Article  CAS  Google Scholar 

  33. Fujioka H, Goto A, Otake K, Kubo O, Sawama Y, Maegawa T (2011) An unusual reaction of α-alkoxyphosphonium salts with Grignard reagents under an O2 atmosphere. Chem Commun 47(35):9894–9896

    Article  CAS  Google Scholar 

  34. Goto A, Otake K, Kubo O, Sawama Y, Maegawa T, Fujioka H (2012) Effects of phosphorus substituents on reactions of α-alkoxyphosphonium salts with nucleophiles. Chem Eur J 18(36):11423–11432

    Article  CAS  Google Scholar 

  35. Ley SV, Lygo B, Organ HM, Wonnacott A (1985) Wittig and Horner–Wittig coupling reactions of 2-substituted cyclic ethers and their application to spiroketal synthesis. Tetrahedron 41(18):3825–3836

    Article  CAS  Google Scholar 

  36. Adamek J, Mazurkiewicz R, Węgrzyk A, Erfurt K (2017) 1-Imidoalkylphosphonium salts with modulated Cα-P + bond strength: synthesis and application as new active α-imidoalkylating agents. Beilstein J Org Chem 13:1446–1455

    Article  CAS  Google Scholar 

  37. Tuckmantel W, Oshima K, Utimoto K (1986) A Convenient preparation of α-methoxyalkyltriphenylphosphonium tetrafluoroborates. Tetrahedron Lett 27:5617

    Article  CAS  Google Scholar 

  38. Fujioka H, Goto A, Otake K, Kubo O, Yahata K, Sawama Y, Maegawa T (2010) Remarkable effect of phosphine on the reactivity of O, P-acetal—efficient substitution reaction of O, P-acetal. Chem Commun 46(22):3976–3978

    Article  CAS  Google Scholar 

  39. Mumtaz S, Wali KS, Zaidi JH, Iqbal A, Maqsood CZ, Khan K, Perveen S (2013) Synthesis of chiral menthoxymethyl ether of phenol and substituted phenol and their use in directed ortho metalation. Lett Org Chem 10(8):578–583

    Article  CAS  Google Scholar 

  40. Gondal HY, Cheema ZM, Zaidi JH, Yousuf S, Choudhary MI (2018) Facile synthesis of α-alkoxymethyltriphenylphosphonium iodides: new application of PPh3/I2. Chem Cent J 12(1):62

    Article  Google Scholar 

  41. Pindur U, Lutz G, Rogge M (1995) First synthesis of chiral 3-vinylindoles as 4π-components for diels-alder reactions. J Heterocycl Chem 32(1):201–206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are obliged to Pakistan Science Foundation (PSF) for generous support of this research project (P-US/Chem 427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Y. Gondal.

Ethics declarations

Conflict of Interest

There is no conflict of interests among all authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gondal, H.Y., Cheema, Z.M., Siddiqui, H. et al. Facile Efficient Synthesis of New Alkoxymethylphosphonium Tetrafluoroborates; Valuable Alternative to Their Halide Analogues. Chemistry Africa 1, 97–102 (2018). https://doi.org/10.1007/s42250-018-0009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-0009-5

Keywords

Navigation