Skip to main content
Log in

Investigations of yttrium-doped cobalt–zinc ferrite as potential material for transducer application

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A wide range of applications of nano cobalt ferrite as a magnetic ceramic in material and biological science and technology suggests a need to optimize its structural and magnetic features. Chemical composition and the size of cobalt ferrite particles with its substituent ions are the determining factors in exploring its properties. For this purpose, yttrium-doped cobalt–zinc nano sized ferrite with the chemical formula Co0.8Fe2-xZn0.2YxO4 and with x ranging from 0.00 to 0.03 in step of 0.01 were synthesized by the combustion method and then analyzed to know their structural and magnetic parameters. The spinel phase formation was confirmed by using x-ray diffractometry. The samples contained 15-nm sized particles as confirmed from scanning electron micrographs. Hysteresis shows decline in magnetic parameters with increase in rare earth doping and is attributed to the 3d-4f orbital coupling and their magnetic interactions. Magnetostriction measurements were measured using strain gauge sensor. As against our expectation, the yttrium substitution decreased the magnetostriction values. However, the derivative of strain with respect to magnetic field showed a rise with yttrium doping. This suggests an application in transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Qi, Y. Yang, X. Zhao, X. Liu, P. Wu, F. Zhang, S. Xu, Controllable magnetic properties of cobalt ferrite particles derived from layered double hydroxide precursors. Particuology 8, 207–211 (2010)

    Article  CAS  Google Scholar 

  2. Y. Cede~no-Mattei, O. Perales-P´erez, Microelectron., J. 40 (4–5) (2009)673.

  3. K. Ishino, Y. Narumiya, Am. Ceram. Soc. Bull., 66 (10) (1987)1469.

  4. A. Sarkar, S. Kapoor, G. Yashwant, H.G. Salunke, T. Murkherjee, J. Phys. Chem. 109, 7203 (2005)

    Article  CAS  Google Scholar 

  5. A.K. Giri, K. Pellerin, W. Pongsaksawad, M. Sorescu, S. Majetich, IEEETrans. Magn. 36, 15 (2000)

    Google Scholar 

  6. A.K. Giri, E.M. Kirkpatrick, P. Moongkhamllang, S.A. Majetich, J. Appl. Phys., Lett. 80, 43 (2002)

    Article  Google Scholar 

  7. V. Pallai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn.Mater. 163, 243–248 (1996)

    Article  Google Scholar 

  8. R. Skomski, J. Phys. Condens. Matter 15, R1–R56 (2003)

    Article  Google Scholar 

  9. J. Smit, H. P. J. Wijn, John Wiley & Sons, London, UK, 1959(Ferrites).

  10. G.Y. Yurkov, D.A. Baranov, I.P. Dotsenko, S.P. Gubin, New magnetic materials based on cobalt and iron-containing nanoparicles. Compos. Part B 37, 413–417 (2006)

    Article  Google Scholar 

  11. D.L. Leslie-Pelecky, R.D. Rieke, Magnetic Properties of Nanostructured Materials. Chem. Mater. 8, 1770–1783 (1996)

    Article  CAS  Google Scholar 

  12. D. Fiorani, “Magnetic properties of fine particles, In: J .L. Dormann, D. Fiorani (Eds.)”, North-Holland Delta Series, Elsevier, London, UK, 1992.

  13. D.K. Kim, Y. Zhang, W. Voit, K.V. Rao, M. Muhammed, J. Magn. Magn. Mater. 225(1–2), 30 (2001)

    Article  CAS  Google Scholar 

  14. Y. Kim, D. Kim, C. Lee, Physica B337, 23 (2003)

    Google Scholar 

  15. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guérault, J.M. Greneche, J. Phys. Condens. Matter 12, 7795 (2000)

    Article  CAS  Google Scholar 

  16. N. Ponpandian, A. Narayanasamy, C.N. Chinnasamy, N. Sivakumar, J.M. Greneche, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, Néel temperature enhancement in nanostructured nickel zinc ferrite. Appl. Phys. Lett. 86, 192510 (2005)

    Article  Google Scholar 

  17. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Makatsuka, T. Furubyashi, I. Nakatani, Phys. Rev. B63, 184108 (2001)

    Article  Google Scholar 

  18. V. Šepelák, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker, Nonequilibrium Cation Distribution, Canted Spin Arrangement, and Enhanced Magnetization in Nanosized MgFe2O4Prepared by a One-Step Mechanochemical Route. Chem.Mater. 18, 3057–3067 (2006)

    Article  Google Scholar 

  19. G.F. Goya, H.R. Rechenberg, J. Magn. Magn. Mater. 191, 196 (1999)

    Google Scholar 

  20. D. Carta, M.F. Casula, A. Falqui, et al., A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M: Mn, Co, Ni). J. Phys. Chem. C 113(2009), 8606 (2009)

    Article  CAS  Google Scholar 

  21. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)

    Article  CAS  Google Scholar 

  22. S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earthdoped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22, 2740–2750 (2012)

    Article  CAS  Google Scholar 

  23. G. Bulai, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, Effect of rare earth substitution in cobalt ferrite bulk materials. J. Magn. Magn. Mater. 390, 123–131 (2015)

    Article  CAS  Google Scholar 

  24. L. Avazpour, H. Shokrollahi, M.R. Toroghinejad, M.A. Zandi Khajeh, Effect of rare earth substitution on magnetic and structural properties of Co1-xREx Fe2O4 (RE: Nd, Eu) nanoparticles prepared via EDTA/EG assisted sol-gel synthesis. J. Alloys Compd. 662, 441 (2015)

    Article  Google Scholar 

  25. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Effect of Tb3þ substitution on structural, electrical and magnetic properties of sol-gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 578, 314–319 (2013)

    Article  CAS  Google Scholar 

  26. I. Ali, M.U. Islam, M. Ishaque, H.M. Khan, M. Naeem Ashiq, M.U. Rana, Structural and magnetic properties of holmium substituted cobalt ferrites synthesized by chemical co-precipitation method. J. Magn. Magn. Mater. 324, 3773–3777 (2012)

    Article  CAS  Google Scholar 

  27. B. Yan, P. Gao, Z. Lu, R. Ma, E.V. Rebrov, H. Zheng, Y. Gao, Effect of Pr3+ substitution on the microstructure, specific surface area, magnetic properties and specific heating rate of Ni0.5Zn0.5PrxFe2-xO4 nanoparticles synthesized via solegel method. J. Alloys Compd. 639, 626–634 (2015)

    Article  CAS  Google Scholar 

  28. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 323, 133–137 (2011)

    Article  CAS  Google Scholar 

  29. Y. Mohammadifar, H. Shokrollahi, Z. Karimi, L. Karimi, The synthesis of Co1-xDyxFe2O4 nanoparticles and thin films as well as investigating their magneticand magneto-optical properties. J. Magn. Magn. Mater. 366, 44 (2014)

    Article  CAS  Google Scholar 

  30. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, Low temperature synthesis of nanocrystalline Dy3þ doped cobalt ferrite: structural and magnetic properties. J. Appl. Phys. 110, 51 (2011)

    Article  Google Scholar 

  31. A.D. Sheikh, V.L. Mathe, Dielectric, ferroelectric, magnetic and magnetoelectric properties of PMN-PT based ME composites. J. Phys. Chem. Solids 72, 1423 (2011)

    Article  CAS  Google Scholar 

  32. S.G. Kakade, R.C. Kambale, C.V. Ramanna, Y.D. Kolekar, Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er 3þ) ion substituted cobalt-rich ferrite (Co1.1 Fe1.9-x Er xO4 ). RSC Adv. 6, 33308–33317 (2016)

    Article  CAS  Google Scholar 

  33. G. Dascalu, T. Popescu, M. Feder, O.F. Caltun, Structural, electric and magneticproperties of CoFe1.8RE0.2O4 (RE=Dy, Gd, La) bulk materials. J. Magn. Magn.Mater. 333, 69–74 (2013)

    Article  CAS  Google Scholar 

  34. I.C. Nlebedim, N. Ranvah, P.I. Williams, Y. Melikhov, J.E. Snyder, A.J. Moses, D.C. Jiles, Effect of heat treatment on the magnetic and magnetoelastic properties of cobalt ferrite. J. Magn. Magn. Mater. 322, 1929–1933 (2010)

    Article  CAS  Google Scholar 

  35. P.N. Anantharamaiah, P.A. Joy, High magnetostriction parameters of sinteredand magnetic field annealed Ga-substituted CoFe2O4. Mater. Lett. 192, 169 (2017)

  36. M. Atif, R.S. Turtelli, R. Grossinger, F. Kubel, Influence of manganese substitution on the microstructure and magnetostrictive properties of Co1-xMnx Fe2O4(x=0.0-0.4) ferrite. J. Appl. Phys. 113, 1 (2013)

    Article  Google Scholar 

  37. S.H. Song, C.C.H. Lo, S.J. Lee, S.T. Aldini, J.E. Snyder, D.C. Jiles, Magnetic and magnetoelastic properties of Ga-substituted cobalt ferrite. J. Appl. Phys. 101, 1 (2007)

    Article  Google Scholar 

  38. R. Jasrotia, Suman, V.P. Singh, R. Kumar, R. Verma, A. Chauhan, Effect of Y3+, Sm3+ and Dy3+ ions on the microstructure, morphology, optical and magnetic properties NiCoZn magnetic nanoparticles. Results Phys 15, 102544 (2019)

    Article  Google Scholar 

  39. Muhammad Asif Yousufa, Sobia Jabeenb, Maharzadi Noureen Shahic, Muhammad Azhar Khand, Imran Shakire, Muhammad Farooq Warsia,⁎“Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route”. Result in Physics, (2020) 102973, 1.

  40. R. Samad, M.u.D. Rather, K. Asokan, B. Want, Dielectric and magnetic properties of rare-earth-doped cobalt ferrites and their first-order reversal curve analysis. Applied Physics A 125, 503 (2019)

    Article  CAS  Google Scholar 

  41. S.R. Naik, A.V. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 48(28), 24959 (2012)

    Google Scholar 

  42. Erum Pervaiz1 and I H Gul, “Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite”. Journal of Physics: Conference Series, 439 (2013) 012015.

  43. S. Abbas, A. Munir, F. Zahra, M.A. Rehman, Enhanced electrical properties in Nd doped cobalt ferrite nano-particles. Mater. Sci. Eng. 146, 012027 (2016)

    Google Scholar 

  44. S. Xavier, S. Thankachan, B.P. Jacob, E.M. Mohammed, Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite. J. Nanosci., 524380 (2013)

  45. M. Gupta, A. Das, D. Das, S. Mohapatra, Datta A, “Chemical synthesis of rare earth (La, Gd) doped cobalt ferrite and a comparative analysis of their magnetic properties”. J. Nanosci. Nanotechnol. 20(8), 5239–5245 (2020)

    Article  Google Scholar 

  46. Ç.E. Demirci, P.K. Manna, Y. Wroczynskyj, S. Aktürk, Lanthanum ion substituted cobalt ferrite nanoparticles and their hyperthermia efficiency. J Magn Magnetic Materials 458(15), 2573 (2018)

    Google Scholar 

  47. C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, A. Pui, Rare earth metals' influence on the heat generating capability of cobalt ferrite nanoparticles. Ceram. Int. 42(10), 11958–11965 (2016)

    Article  CAS  Google Scholar 

  48. Manisha Dhiman,Bhupendra Chudasama, Vinod Kumar, K.B. Tikoo, Sonal Singhal, “Augmenting the photocatalytic performance of cobalt ferrite via change in structural and optical properties with the introduction of different rare earth metal ions”. Ceram. Int., 45, Issue3, 15 2019, 3698.

  49. A.-C. Humelnicu, C. Cojocaru, P.P. Dorneanu, P. Samoila, V. Harabagiu, Novel chitosan-functionalized samarium-doped cobalt ferrite for adsorptive removal of anionic dye from aqueous solutions. Comptes Rendus Chimie, 50 20, 11–12 (2017) pages 1026 -1036

  50. G. Xi, T. Zhao, L. Wang, C. Dun, Y. Zhang, Effect of doping rare earths on magnetostriction characteristics of CoFe2O4 prepared from spent Li-ion batteries. Physica B: Physics of Condensed Matter 534, 76–82 (2018)

    Article  CAS  Google Scholar 

  51. K.K. Patankar, J.V. Devkar, D.S. More, V.L. Mathe, Structural Investigations of Y substituted Cobalt Zinc ferrite by auto combustion method. J. Inf. Comput. Sci. 10(1), 1446–1452 (2020)

    Google Scholar 

  52. D.M. Ghone, S. Premkumar, K.K. Patankar, S.D. Kaushik, V.L. Matje, Enhanced strain derivative of Ho substituted Cobalt ferrite and improved magnetoelectric coupling in cosintered bilayered ME composites. Sens. Actuators, Sensors and Actuators A 301, 111716 (2020)

    Article  CAS  Google Scholar 

  53. G. Bulain, L. Diamandescu, I. Dumitru, S. Gurlui, M. Feder, O.F. Caltun, Effect of rare earth substitution in bulk cobalt ferrite. J. Magn. Magn. Mater. 66, 123–131 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Physics, Savitribai Phule Pune University, Pune, for the magnetic properties measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Patankar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devkar, J.V., Patankar, K.K., Ghone, D.M. et al. Investigations of yttrium-doped cobalt–zinc ferrite as potential material for transducer application. emergent mater. 4, 1725–1733 (2021). https://doi.org/10.1007/s42247-021-00209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00209-2

Keywords

Navigation