Skip to main content
Log in

Cobalt nano-ferrite synthesized by molten salt process: structural, morphological and magnetic studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoparticles of CoFe2O4 were synthesized by molten salt process using non-standards reagents. The effects of experimental parameters on crystal structure, magnetic behavior, nanoparticles size and morphology will be studied. From the XRD patterns, pure spinel phase of cobalt nano-ferrite with space group Fd-3 m can be obtained from 900 °C, the FTIR confirms the XRD results by the two-absorption band characteristic of the crystal inverse spinel structure, TEM images show the evolution of nanoparticles size by temperature or annealing time, and magnetic measurements show a ferromagnetic behavior similar to magnetic behavior of cobalt ferrite elaborated by analytical grade reagents. Consequently, the CoFe2O4 synthesized by metallurgical grade reagent is multifunctional materials and has very competitive to other elaborated by commercial reagents for using in many nanotechnological applications as magnetic sensing, magnetic data storage and radiofrequency circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, Enhanced magnetic properties of polymer-magnetic nanostructures synthesized by ultrasonication. J. Alloy. Compd. 720, 395–400 (2017)

    Article  Google Scholar 

  2. G.V.M. Williams, T. Prakash, J. Kennedy, S.V. Chong, S. Rubanov, Spin-dependent tunnelling in magnetite nanoparticles. J. Magn. Magn. Mater. 460, 229–233 (2018)

    Article  ADS  Google Scholar 

  3. T. Prakash, G.V.M. Williams, J. Kennedy, S. Rubanov, High spin-dependent tunneling magnetoresistance in magnetite powders made by arc-discharge. J. Appl. Phys. 120, 123905 (2016)

    Article  ADS  Google Scholar 

  4. T. Dipponga, I.G. Deacb, O. Cadarc, E.A. Leveic, I. Petean, Impact of Cu2+ substitution by Co2+ on the structural and magnetic properties of CuFe2O4 synthesized by sol-gel route. Mater. Charact. 163, 110248 (2020)

    Article  Google Scholar 

  5. T. Dippong, E.A. Levei, I.G. Deac, E. Neag, O. Cadar, Influence of Cu2+, Ni2+, Zn2+ ions doping on the structure, morphology, and magnetic properties of Co-Ferrite embedded in SiO2 matrix obtained by an Innovative sol–gel route. Nanomater. 10, 580 (2020)

    Article  Google Scholar 

  6. T. Dipponga, E.A. Leveib, O. Cadarb, F. Gogac, L. Barbu-Tudorand, G. Borodi, Size and shape-controlled synthesis and characterization of CoFe2O4 nanoparticles embedded in a PVA-SiO2 hybrid matrix. J. Anal. Appl. Pyrol. 128, 121–130 (2017)

    Article  Google Scholar 

  7. T. Dippong, E.A. Levei, I.G. Deac, F. Goga, I. Petean, A. Avram, O. Cadar, The impact of polyol structure on the formation of Zn0.6Co0.4Fe2O4 spinel-based pigments. J. Sol-Gel Sci. Tech. 92, 736–744 (2019)

    Article  Google Scholar 

  8. C. Wang, L. Zhu, C. Chang, Y. Fu, X. Chu, Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal method and its photocatalytic degradation of bisphenol A. Cataly. Comm. 37, 92–95 (2013)

    Article  Google Scholar 

  9. Y. Wang, J. Park, B. Sun, H. Ahn, G.X. Wang, Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible Lithium storage. Chem. Asian. J. 7, 1940–1946 (2012)

    Article  Google Scholar 

  10. E. Pervaiz, I.H. Gul, Enhancement of electrical properties due to Cr+3 substitution in Co-Ferrite nano particles synthesized by two chemical techniques. J. Magn. Magn. Mater. 324, 3695–3703 (2012)

    Article  ADS  Google Scholar 

  11. P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources. 172, 379–387 (2007)

    Article  ADS  Google Scholar 

  12. I. Malinowska, Z. Ryżyńska, E. Mrotek, T. Klimczuk, A. Zielińska-Jurek. Synthesis of CoFe2O4 nanoparticles: the effect of ionic strength, concentration, and precursor type on morphology and magnetic properties. J. Nanomater. 2020, Article ID 9046219, 12

  13. H.B. Yang, Y. Lin, F. Wang, H.J. Luo, Molten salt synthesis of single phase CoFe2O4 powder. Mater. Technology. 23, 138–141 (2013)

    Article  Google Scholar 

  14. Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite. J. Magn. Magn. Mater. 323, 2748–2756 (2011)

    Article  ADS  Google Scholar 

  15. N.R. Panchal, R.B. Jotania, Cobalt ferrite nano particles by microemulsion route. Nanosci. Nanotech. 1, 17–18 (2010)

    Google Scholar 

  16. T. Dippong, E.A. Levei, L. Diamandescu, I. Bibicu, C. Leostean, G. Borodi, L.B. Tudoran, Structural and magnetic properties of CoxFe3xO4 versus Co/Fe molar ratio. J. Magn. Magn. Mater. 394, 111–116 (2015)

    Article  ADS  Google Scholar 

  17. M. Stefanescu, M. Stoia, T. Dippong, O. Stefanescu, P. Barvinschi, Preparation of CoxFe3xO4 Oxydic system starting from metal nitrates and propanediol. Acta Chim. Slov. 56, 379–385 (2009)

    Google Scholar 

  18. S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, X-ray diffraction studies on crystallite size evolution of CoFe2O4 nano-particles prepared using mechanical alloying and sintering. Appl. Surf. Sci. 256, 3122–3127 (2010)

    Article  ADS  Google Scholar 

  19. Z. Zi, Y. Sun, X. Zhu, Z. Yang, J. Dai, W. Song, Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J. Magn. Magn. Mater. 321, 1251–1255 (2009)

    Article  ADS  Google Scholar 

  20. Y. Mouhib, M. Belaiche, S. Briche. Elaboration, characterization, and magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles of high purity using molten salts technique. Phys. Status Solidi A 2018, 1800469

  21. C. Duval, R. Duval, Sur la thermogravimétrie des précipités analytiques. Dosage du cobalt. Analyt. Chim. Acta. 5, 84–97 (1951)

    Article  Google Scholar 

  22. S.J. Mercy, N. Murali, A. Ramakrishna, Y. Ramakrishna, V. Veeraiah, K. Samatha, Microstructural, thermal, electrical and magnetic analysis of Mg2+ substituted Cobalt ferrite. Appl. Phys. A. 126, 873 (2020)

    Article  ADS  Google Scholar 

  23. Y. Cedeño-Mattei, O. Perales-Pérez, M. S. Tomar and F. Román. Optimization of Magnetic Properties in Cobalt Ferrite Nanocrystals. ENS 2007 hal-00202514, 63–67.

  24. E.R. Kumar, R. Jayaprakash, T. Prakash, The effect of annealing on phase evolution, microstructure and magnetic properties of Mn substituted CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 358–359, 123–127 (2014)

    Article  Google Scholar 

  25. E.R. Kumar, R. Jayaprakash, M.S. Seehra, T. Prakash, S. Kumar, Effect of a-Fe2O3 phase on structural, magnetic and dielectric properties of Mn–Zn ferrite nanoparticles. J. Phys. Chem. Sol. 74, 943–949 (2013)

    Article  ADS  Google Scholar 

  26. Ch. Vinuthna, D. Ravinder, R.M. Raju, Characterization of Co1-XZnxFe2O4 nano spinal ferrites prepared by citrate precursor method. Int. J. Eng. Resear. Appl. 3, 654–660 (2013)

    Google Scholar 

  27. S. Xavier, S. Thankachan, B.P. Jacob, E.M. Mohammed, Effect of sintering temperature on the structural and magnetic properties of cobalt ferrite nanoparticles. Nano. Phys. Chem. Math. 4, 430–437 (2013)

    Google Scholar 

  28. P.C.R. Varma, R.S. Manna, D. Banerjee, M.R. Varma, K.G. Suresh, A.K. Nigam, Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study. J. Alloy. Compd. 453, 298–303 (2008)

    Article  Google Scholar 

  29. V.G. Patil, E. Sagar, S.D.M. Shirsath, S.J. Shukla, K.M. Jadhav, Effect of zinc substitution on structural and elastic properties of cobalt ferrite. J. Alloy. Compd. 488, 199–203 (2009)

    Article  Google Scholar 

  30. A.B. Shinde, Structural and electrical properties of cobalt ferrite nanoparticles. Inter. J. Innov. Tech. Expl. Eng. (IJITEE) 3, 2278–3075 (2013)

    Google Scholar 

  31. M.B. Mohamed, M. Yehia, Cation distribution and magnetic properties of nanocrystalline Gallium substituted Cobalt ferrite. J. Alloy. Compd. 615, 181–187 (2014)

    Article  Google Scholar 

  32. T. Dippong, E.A. Levei, C. Tanaselia, M. Gabor, M. Nasui, L.B. Tudoran, G. Borodi, Magnetic properties evolution of the CoxFe3 - xO4/SiO2 system due to advanced thermal treatment at 700 °C and1000°C. J. Magn. Magn. Mater. 410, 47–54 (2016)

    Article  ADS  Google Scholar 

  33. M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014)

    Article  ADS  Google Scholar 

  34. I. Sharifi, H. Shokrollahi, M.M. Doroodmand, R. Safi, Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 324, 1854–1861 (2012)

    Article  ADS  Google Scholar 

  35. S.A. Khorrami, Q.S. Manuchehri, Magnetic properties of cobalt ferrite synthesized by hydrothermal and Co-precipitation methods: a comparative study. J. Appl. Chem. Resear. 7, 15–23 (2013)

    Google Scholar 

  36. M. Stefanescu, M. Stoia, C. Caizer, T. Dippong, P. Barvinschi, Preparation of CoxFe3-xO4 nanoparticles by thermal decomposition of some organo-metallic precursors. J. Therm. Anal. Calorim. 97, 245–250 (2009)

    Article  Google Scholar 

  37. T.S. Gokul Raja, S.V. Sreenija, S. Balamurugan, Eco-friendly synthesized nanocrystalline CoFe2O4 materials by molten salt flux method. AIP Conf. Procd. 1665, 050174 (2015)

    Article  Google Scholar 

  38. P.D. Thang, G. Rijnders, D.H.A. Blank, Spinel cobalt ferrite by complexometric synthesis. J. Magn. Magn. Materi. 295, 251–256 (2005)

    Article  ADS  Google Scholar 

  39. E. Hutamaningtyas, S. Utari, A.T. Wijayanta, B. Purnama, FTIR and structural properties of co-precipitated cobalt ferrite nano particles. J. Phys. Conf. 776, 012023 (2016)

    Article  Google Scholar 

  40. G. Márquez, V. Sagredo, R. Guillén-Guillén, G. Attolini, F. Bolzoni, Calcination effects on the crystal structure and magnetic properties of CoFe2O4 nanopowders synthesized by the coprecipitation method. Rev. Mex. Físi. 66, 251–257 (2020)

    Article  Google Scholar 

  41. P. A. Vinosha, G. I. N. Mary, K. Mahalakshmi, L. A. Mely, S. J. Das, Study on cobalt ferrite nanoparticles synthesized by Co-precipitation technique for Photo-Fenton application. Mech. Mater. Sci. Eng. 2017, 2412–5954

  42. N.T.T. Loan, N.T.H. Lan, N.T.T. Hang, N.Q. Hai, D.T. Anh, V.T. Hau, L.V. Tan, T.V. Tran, CoFe2O4 nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-fenton properties. Proces. 7, 885 (2019)

    Article  Google Scholar 

  43. N.T. To Loan, N.T.H. Lan, N.T.T. Hang, N.Q. Hai, D.T. Tu Anh, V.T. Hau, L.V. Tan, T.V. Tran, CoFe2O4 Nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-fenton properties. Processes 7, 885 (2019)

    Article  Google Scholar 

  44. M. G. Naseri, E. B. Saion, H. A. Ahangar, A. H. Shaari, M. Hashim, Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method. J. Nanomater. 2010, 2010, Article ID 907686, 8

  45. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60, 3548–3552 (2006)

    Article  Google Scholar 

  46. T. Dippong, E.A. Levei, I.G. Deac, F. Goga, O. Cadar, Investigation of structural and magnetic properties of NixZn1-xFe2O4/SiO2 (0≤x≤1) spinel-based nanocomposites. J. Anal. Appl. Pyrolys. 144, 104713 (2019)

    Article  Google Scholar 

  47. TD 3 2019–2020 Thomas Dippong, Oana Cadar, Erika Andrea Levei, Iosif Grigore Deac. Microstructure, porosity and magnetic proper ties of Zn0.5Co0.5Fe2O4/SiO2 nanocomposites prepared by sol-gel method using different polyols. J. Magn. Magn. Mater. 2020, 498, 166168

  48. T. Dippong, O. Cadar, I.G. Deac, M. Lazar, G. Borodi, E.A. Levei, Influence of ferrite to silica ratio and thermal treatment on porosity, surface, microstructure and magnetic properties of Zn0.5Ni0.5Fe2O4/SiO2 nanocomposites. J. Alloy. Compd. 828, 154409 (2020)

    Article  Google Scholar 

  49. H.A. Moayyer, A. Ataie, Investigation on phase evolution in the processing of nano-crystalline cobalt ferrite by solid-state reaction route. Ad. Mater. Resear. 829, 767–771 (2014)

    Article  Google Scholar 

  50. Q. Cao, Z. Liu, R. Che, Ordered mesoporous CoFe2O4 nanoparticles: molten-salt-assisted rapid nanocasting synthesis and the effects of calcining heating rate. New J. Chem. 38, 3193 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Mouhib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhib, Y., Belaiche, M. Cobalt nano-ferrite synthesized by molten salt process: structural, morphological and magnetic studies. Appl. Phys. A 127, 613 (2021). https://doi.org/10.1007/s00339-021-04758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04758-5

Keywords

Navigation