Skip to main content

Advertisement

Log in

Chemical exfoliation synthesis of boron nitride and molybdenum disulfide 2D sheets via modified Hummers’ method

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

To realize long-cherished dreams of employing inorganic graphene cousins such as boron nitride (BN) and molybdenum disulfide (MoS2) for large area coating applications, e.g., miniaturized electronic chips, radio wave devices, energy storage, LEDs, and solar cells, scalable synthesis pathways are presently being hunted with unprecedented curiosity to obtain large-scale 2D exfoliated sheets. Modified Hummers’ method provides an apt alternate and has already been established for graphene. However, it currently faces limitations in scalable production of BN and MoS2 as the nature of binding in their crystallographic lattice as well as their interactions with the solvents are different in these materials’ vis-a-vis graphene. Therefore, intensely focused efforts are needed to optimize synthesis parameters to produce scalable quantities of these advanced materials at an economical cost. By hybridizing BN with MoS2, for example, one can maneuver the material’s dielectric functionality, such as frequency bandwidth where it functions. In this report, we present a facile synthesis of BN and MoS2 via modified Hummers’ synthesis. While the fixed BN:KMnO4 precursor ratio of 1:6 was considered to obtain 2D BN, it (MoS2:KMnO4) was altered, i.e., 1:6, 1:5, and 1:4, for obtaining MoS2 sheets. Interestingly, while precursor ratio 1:6 resulted in average lateral dimension ~100 nm, precursor ratio of 1:4 yielded lateral dimensions ~500 nm as evidenced from TEM measurements. Solvothermal (200 °C for 2 h) reduction was carried out for both BN and MoS2 to remove the surface functionalities employing reducing solvent DMF. We obtained few-layer crystalline atomic sheets of BN and MoS2. While inter-atomic distance in 2D BN was measured to be ~1.5 A° as evident from HRTEM imaging, E2g vibration mode ~ 1360 cm−1 was recorded in Raman spectroscopy. While HRTEM imaging reveals that average inter-atomic (Mo-S) distances in MoS2 atomic sheets was obtained to be ~2.41 A°, two distinct MoS2 Raman modes, viz., E2g ~ 404 cm−1 and A1g ~385 cm−1, were witnessed. Microwave blending of 2D MoS2 with 2D BN resulted in significant modulation of dielectric behavior. While the modified Hummers’ synthesis for BN and MoS2 will be a boon in disguise for several dream applications envisaged earlier, it may inspire future generations of devices and sensors with novel functionalities, it is believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  2. A.J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Science 350, 1513 (2015)

    Article  CAS  Google Scholar 

  3. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016)

    Article  CAS  Google Scholar 

  4. P. Ranjan, T.K. Sahu, R. Bhushan, S.S.R.K.C. Yamijala, D.J. Late, P. Kumar, A. Vinu, Freestanding Borophene and Its Hybrids. Adv. Mater. 31, 1900353 (2019)

    Article  CAS  Google Scholar 

  5. P. Ranjan, J.M. Lee, P. Kumar, A. Vinu, Borophene: New Sensation in Flatland. Adv. Mater. 32, 2000531 (2020)

    Article  CAS  Google Scholar 

  6. L. Li, Y. Yu, G. Ye, et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)

    Article  CAS  Google Scholar 

  7. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015)

    Article  CAS  Google Scholar 

  8. M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G.L. Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16, 095002 (2014)

    Article  CAS  Google Scholar 

  9. J. Deng, B. Xia, X. Ma, H. Chen, H. Shan, X. Zhai, B. Li, A. Zhao, Y. Xu, W. Duan, S.C. Zhang, B. Wang, J.G. Hou, Nat. Mater. 7, 1081–1086 (2018)

    Article  CAS  Google Scholar 

  10. M. Pumera, Z. Sofer, 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Adv. Mater. 29, 1605299 (2017)

    Article  CAS  Google Scholar 

  11. J. Yuhara, B. He, N. Matsunami, M. Nakatake, G.L. Lay, Graphene's Latest Cousin: Plumbene Epitaxial Growth on a “Nano WaterCube”. Adv. Mater. 31, 1901017 (2019)

    Article  CAS  Google Scholar 

  12. P. Kumar, J. Liu, P. Ranjan, Y. Hu, S.S.R.K.C. Yamijala, S.K. Pati, J. Irudayaraj, G.J. Cheng, Alpha Lead Oxide (α-PbO): A New 2D Material with Visible Light Sensitivity. Small 14, 1703346 (2018)

    Article  CAS  Google Scholar 

  13. D. Lin, P. Kumar, S. Jin, S. Liu, Q. Nian, G.J. Cheng, Laser direct writing of crystalline Fe2O3 atomic sheets on steel surface in aqueous medium. Appl. Surf. Sci. 351, 148–154 (2015)

    Article  CAS  Google Scholar 

  14. A. Pakdel, Y. Bando, D. Golberg, Nano boron nitride flatland. Chem. Soc. Rev. 43, 934–959 (2014)

    Article  CAS  Google Scholar 

  15. Y. Gogotsi, B. Anasori, ACS Nano 13, 8491–8494 (2019)

    Article  CAS  Google Scholar 

  16. T.P. Crane, B.P. Cowan, Phys. Rev. B: Condens. Matter Mater. Phys. 62, 11359–11362 (2000)

    Article  CAS  Google Scholar 

  17. M. Miller, F.J. Owens, Tuning the electronic and magnetic properties of boron nitride nanotubes. Solid State Commun. 151, 1001–1003 (2011)

    Article  CAS  Google Scholar 

  18. E.K. Sichel, R.E. Miller, M.S. Abrahams, C.J. Buiocchi, Phys. Rev. B: Condens. Matter Mater. Phys. 13, 4607–4611 (1976)

    Article  CAS  Google Scholar 

  19. C.H. Henager Jr., W.T. Pawlewicz, Thermal conductivities of thin, sputtered optical films. Appl. Opt. 32, 91–101 (1993)

    Article  CAS  Google Scholar 

  20. X. Li, X. Hao, M. Zhao, Y. Wu, J. Yang, Y. Tian, G. Qian, Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides. Adv. Mater. 25, 2200–2204 (2013)

    Article  CAS  Google Scholar 

  21. H. Li, R.Y. Tay, S.H. Tsang, W. Liu, E.H.T. Teo, Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances. Electrochim. Acta 166, 197–205 (2015)

    Article  CAS  Google Scholar 

  22. J. Wang, F. Ma, M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv. 7, 16801–16822 (2017)

    Article  CAS  Google Scholar 

  23. G.R. Bhimanapati, D. Kozuch, J. Robinson, Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale 6, 11671–11675 (2014)

    Article  CAS  Google Scholar 

  24. G. Constantinescu, A. Kuc, T. Heine, Stacking in Bulk and Bilayer Hexagonal Boron Nitride. Phys. Rev. Lett. 111, 036104 (2013)

    Article  CAS  Google Scholar 

  25. N. Marom, J. Bernstein, J. Garel, A. Tkatchenko, E. Joselevich, L. Kronik, O. Hod, Stacking and Registry Effects in Layered Materials: The Case of Hexagonal Boron Nitride. Phys. Rev. Lett. 105, 046801 (2010)

    Article  CAS  Google Scholar 

  26. J.H. Warner, M.H. Rümmeli, A. Bachmatiuk, B. Büuchner, ACS Nano 4, 1299–1304 (2010)

    Article  CAS  Google Scholar 

  27. K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J. Mater. Chem. C 5, 11992–12022 (2017)

    Article  CAS  Google Scholar 

  28. L. Song, Z. Liu, A.L.M. Reddy, N.T. Narayanan, J.T. Tijerina, J. Peng, G. Gao, J. Lou, R. Vajtai, P.M. Ajayan, Adv. Mater. 24, 4878–4895 (2012)

    Article  CAS  Google Scholar 

  29. U. Krishnan, M. Kaura, K. Singha, M. Kumar, A. Kumara, A synoptic review of MoS2: Synthesis to applications. Superlattice. Microst. 128, 274–297 (2019)

    Article  CAS  Google Scholar 

  30. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reduced graphene oxide by chemical graphitization. Nat. Commun. 1, 73 (2010)

    Article  CAS  Google Scholar 

  31. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4(8), 4806–4814 (2010)

    Article  CAS  Google Scholar 

  32. A.M. Dimiev, J.M. Tour, ACS Nano 8(3), 3060–3068 (2014)

    Article  CAS  Google Scholar 

  33. P. Ranjan, S. Agrawal, A. Sinha, T.R. Rao, J. Balakrishnan, A.D. Thakur, A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications. Sci. Rep. 8, 12007 (2018)

    Article  CAS  Google Scholar 

  34. A. Laturia, M.L.V. Put, W.G. Vandenberghe, NPJ 2D Mater Appl 2, 1–7 (2018)

    Article  CAS  Google Scholar 

  35. P.M. Sudeep, S. Vinod, S. Ozden, R. Sruthi, A. Kukovecz, Z. Konya, R. Vajtai, M.R. Anantharaman, P.M. Ajayan, T.N. Narayanan, RSC Adv. 5, 93964–93968 (2015)

    Article  CAS  Google Scholar 

  36. Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45, 3989–4012 (2016)

    Article  CAS  Google Scholar 

  37. Y. Zhao, X. Wu, J. Yang, X.C. Zeng, Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study. Phys. Chem. Chem. Phys. 14, 5545–5550 (2012)

    Article  CAS  Google Scholar 

  38. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, et al., Small 7, 465–468 (2011)

    Article  CAS  Google Scholar 

  39. X. Gouin, P. Grange, L. Bois, P. L'Haridon, Y. Laurent, Characterization of the nitridation process of boric acid. J. Alloys Compd. 224, 22–28 (1995)

    Article  CAS  Google Scholar 

  40. P. Kumar, Laser flash synthesis of graphene and its inorganic analogues: An innovative breakthrough with immense promise. RSC Adv. 3, 11987–12002 (2013)

    Article  CAS  Google Scholar 

  41. P. Kumar, B. Das, B. Chitara, K.S. Subrahmanyam, K. Gopalakrishnan, S.B. Krupanidhi, C.N.R. Rao, Novel Radiation-Induced Properties of Graphene and Related Materials. Macromol. Chem. Phys. 213, 1146–1163 (2012)

    Article  CAS  Google Scholar 

  42. C.N.R. Rao, K.S. Subrahmanyam, H.S.S.R. Matte, B. Abdulhakeem, P. Kumar, et al., A study of the synthetic methods and properties of graphenes. Sci. Technol. Adv. Mater. 11, 054502 (2010)

    Article  CAS  Google Scholar 

  43. U. Maitra, H. Matte, P. Kumar, C.N.R. Rao, Strategies for the Synthesis of Graphene, Graphene Nanoribbons, Nanoscrolls and Related Materials. CHIMIA 66, 941–948 (2012)

    Article  CAS  Google Scholar 

  44. H. Matte, U. Maitra, P. Kumar, B.G. Rao, K. Pramoda, C.N.R. Rao, Z. Anorg. Allg. Chem. 638, 2617–2624 (2012)

    Article  CAS  Google Scholar 

  45. W. Zhang, M.M. Rahman, F. Ahmed, N.S. Lopa, C. Ge, T. Ryu, S. Yoon, L. Jin, H. Jang, W. Kim, A two-step approach for improved exfoliation and cutting of boron nitride into boron nitride nanodisks with covalent functionalizations. Nanotechnology 31, 425604 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Department of Science and Technology (DST), Govt. of India, especially for the research grant under the Ramanujan fellowship (Sanction No. SB/S2/RJN-205/2014). The authors would also like to sincerely acknowledge the generous support in terms of research facilities and finance from the Indian Institute of Technology Patna.

Author information

Authors and Affiliations

Authors

Contributions

PK conceived the idea. TKS conducted all experiments with initial involvements of PR. The project was overall supervised by PK.

Corresponding author

Correspondence to Prashant Kumar.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, T.K., Ranjan, P. & Kumar, P. Chemical exfoliation synthesis of boron nitride and molybdenum disulfide 2D sheets via modified Hummers’ method. emergent mater. 4, 645–654 (2021). https://doi.org/10.1007/s42247-021-00170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00170-0

Keywords

Navigation