Skip to main content
Log in

Universal production of functionalized 2D nanomaterials via integrating glucose-assisted mechanochemical exfoliation and cosolvent-intensified sonication exfoliation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) nanomaterials have aroused immense attention in extensive applications due to their intriguing physical and chemical properties. However, there is a formidable challenge to prepare few-layered and functionalized 2D nanomaterials in an effective and universal way. Herein, we developed an integrated strategy of glucose-assisted mechanochemical exfoliation and cosolvent-intensified sonication exfoliation to effectively exfoliate and functionalize 2D materials. Taking exfoliation of boron nitride (BN) as an example, the production yield and functionalization ratio of BN nanosheets (BNNSs) reached 47.5% and 25.8 wt.%, 188% and 16% higher than that of BNNSs without sonication exfoliation, respectively. The introduction of glucose not only augmented the friction force between adjacent BN layers to promote the efficiency of ball-milling-driven exfoliation supported by density functional theory calculation, but also reacted with active edges of BNNSs for functionalization. Afterwards, cosolvent-intensified sonication exfoliation strongly stabilized exfoliated BNNSs, obviously boosting the exfoliation yield. This proposed method is universal for preparing various 2D nanomaterials like molybdenum disulfide, tungsten disulfide, and graphene nanosheets. The thin plate structure and high functionalization ratio enabled the release of property superiorities of 2D nanomaterials. Our work offers a promising prototype to realize mass production of functionalized 2D nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liang, J. C.; Hu, Y.; Zhang, K. Q.; Wang, Y. D.; Song, X. M.; Tao, A. Y.; Liu, Y. Z.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752.

    CAS  Google Scholar 

  2. Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

    CAS  Google Scholar 

  3. Weng, Q. H.; Wang, X. B.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–1012.

    CAS  Google Scholar 

  4. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    CAS  Google Scholar 

  5. Sutter, P.; Lahiri, J.; Albrecht, P.; Sutter, E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano 2011, 5, 7303–7309.

    CAS  Google Scholar 

  6. Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 2019, 10, 269.

    Google Scholar 

  7. Witomska, S.; Leydecker, T.; Ciesielski, A.; Samorì, P. Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics. Adv. Funct. Mater. 2019, 29, 1901126.

    Google Scholar 

  8. Yan, Q. W.; Dai, W.; Gao, J. Y.; Tan, X.; Lv, L.; Ying, J. F.; Lu, X. X.; Lu, J. B.; Yao, Y. G.; Wei, Q. P. et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498.

    CAS  Google Scholar 

  9. Tian, X. J.; Wu, N.; Zhang, B.; Wang, Y. F.; Geng, Z. S.; Li, Y. F. Glycine functionalized boron nitride nanosheets with improved dispersibility and enhanced interaction with matrix for thermal composites. Chem. Eng. J. 2021, 408, 127360.

    CAS  Google Scholar 

  10. Yang, S.; Zhang, P. P.; Nia, A. S.; Feng, X. L. Emerging 2D materials produced via electrochemistry. Adv. Mater. 2020, 32, 1907857.

    CAS  Google Scholar 

  11. Yang, L. S.; Chen, W. J.; Yu, Q. M.; Liu, B. L. Mass production of two-dimensional materials beyond graphene and their applications. Nano Res. 2021, 14, 1583–1597.

    CAS  Google Scholar 

  12. Chen, S. H.; Xu, R. Z.; Liu, J. M.; Zou, X. L.; Qiu, L.; Kang, F. Y.; Liu, B. L.; Cheng, H. M. Simultaneous production and functionalization of boron nitride nanosheets by sugar-assisted mechanochemical exfoliation. Adv. Mater. 2019, 31, 1804810.

    Google Scholar 

  13. Shi, D.; Yang, M. Z.; Chang, B.; Ai, Z. Z.; Zhang, K.; Shao, Y. L.; Wang, S. Z.; Wu, Y. Z.; Hao, X. P. Ultrasonic-ball milling: A novel strategy to prepare large-size ultrathin 2D materials. Small 2020, 16, 1906734.

    CAS  Google Scholar 

  14. Wu, H. X.; Yin, S. C.; Du, Y.; Wang, L. P.; Yang, Y.; Wang, H. F. Alkyl-functionalized boron nitride nanosheets as lubricant additives. ACS Appl. Nano Mater. 2020, 3, 9108–9116.

    CAS  Google Scholar 

  15. Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240.

    Google Scholar 

  16. Lee, D.; Lee, B.; Park, K. H.; Ryu, H. J.; Jeon, S.; Hong, S. H. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling. Nano Lett. 2015, 15, 1238–1244.

    CAS  Google Scholar 

  17. Fan, D. L.; Feng, J.; Liu, J.; Gao, T. Y.; Ye, Z. X.; Chen, M.; Lv, X. M. Hexagonal boron nitride nanosheets exfoliated by sodium hypochlorite ball mill and their potential application in catalysis. Ceram. Int. 2016, 42, 7155–7163.

    CAS  Google Scholar 

  18. Wan, L. Q.; Liu, C.; Cao, D. X.; Sun, X.; Zhu, H. L. High phase change enthalpy enabled by nanocellulose enhanced shape stable boron nitride aerogel. ACS Appl. Polym. Mater. 2020, 2, 3001–3009.

    CAS  Google Scholar 

  19. Wang, Z. G.; Wei, X.; Bai, M. H.; Lei, J.; Xu, L.; Huang, H. D.; Du, J. G.; Dai, K.; Xu, J. Z.; Li, Z. M. Green production of covalently functionalized boron nitride nanosheets via saccharide-assisted mechanochemical exfoliation. ACS Sustainable Chem. Eng. 2021, 9, 11155–11162.

    CAS  Google Scholar 

  20. Chen, Y.; Kang, Q.; Jiang, P. K.; Huang, X. Y. Rapid, high-efficient and scalable exfoliation of high-quality boron nitride nanosheets and their application in lithium-sulfur batteries. Nano Res. 2020, 14, 2424–2431.

    Google Scholar 

  21. Liu, K.; Hu, J.; Kong, Z. Q.; Hu, J. W.; Tian, Z. S.; Hou, J. R.; Qin, J. L.; Liu, C. S.; Liang, S.; Wu, H. P. et al. High-yield, high-conductive graphene/nanocellulose hybrids prepared by co-exfoliation of low-oxidized expanded graphite and microfibrillated cellulose. Compos. Part B:Eng. 2021, 225, 109250.

    CAS  Google Scholar 

  22. Rizvi, R.; Nguyen, E. P.; Kowal, M. D.; Mak, W. H.; Rasel, S.; Islam, A.; Abdelaal, A.; Joshi, A. S.; Zekriardehani, S.; Coleman, M. R. et al. High-throughput continuous production of shear-exfoliated 2D layered materials using compressible flows. Adv. Mater. 2018, 30, 1800200.

    Google Scholar 

  23. Li, Z. L.; Young, R. J.; Backes, C.; Zhao, W.; Zhang, X.; Zhukov, A. A.; Tillotson, E.; Conlan, A. P.; Ding, F.; Haigh, S. J. et al. Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 2020, 14, 10976–10985.

    CAS  Google Scholar 

  24. Hu, C. X.; Shin, Y.; Read, O.; Casiraghi, C. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale 2021, 13, 460–484.

    CAS  Google Scholar 

  25. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    CAS  Google Scholar 

  26. Bonaccorso, F.; Bartolotta, A.; Coleman, J. N.; Backes, C. 2D-crystal-based functional inks. Adv. Mater. 2016, 28, 6136–6166.

    CAS  Google Scholar 

  27. Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew. Chem., Int. Ed. 2011, 50, 10839–10842.

    CAS  Google Scholar 

  28. Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water. J. Phys. Chem. C 2011, 115, 2679–2685.

    CAS  Google Scholar 

  29. Marsh, K. L.; Souliman, M.; Kaner, R. B. Co-solvent exfoliation and suspension of hexagonal boron nitride. Chem. Commun. 2015, 51, 187–190.

    CAS  Google Scholar 

  30. Shen, J. F.; Wu, J. J.; Wang, M.; Dong, P.; Xu, J. X.; Li, X. G.; Zhang, X.; Yuan, J. H.; Wang, X. F.; Ye, M. X. et al. Surface tension components based selection of cosolvents for efficient liquid phase exfoliation of 2D materials. Small 2016, 12, 2741–2749.

    CAS  Google Scholar 

  31. Vega, C.; Noya, E. G. Revisiting the Frenkel-Ladd method to compute the free energy of solids: The Einstein molecule approach. J. Chem. Phys. 2007, 127, 154113.

    Google Scholar 

  32. Yang, L. S.; Wang, D. S.; Liu, M. S.; Liu, H. M.; Tan, J. Y.; Wang, Z. Y.; Zhou, H. Y.; Yu, Q. M.; Wang, J. Y.; Lin, J. H. et al. Glue-assisted grinding exfoliation of large-size 2D materials for insulating thermal conduction and large-current-density hydrogen evolution. Mater. Today 2021, 51, 145–154.

    CAS  Google Scholar 

  33. Luo, W.; Wang, Y. B.; Hitz, E.; Lin, Y.; Yang, B.; Hu, L. B. Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Adv. Funct. Mater. 2017, 27, 1701450.

    Google Scholar 

  34. Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.

    CAS  Google Scholar 

  35. Li, M.; Wang, M. J.; Hou, X.; Zhan, Z. L.; Wang, H.; Fu, H.; Lin, C. T.; Fu, L.; Jiang, N.; Yu, J. H. Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos. Part B: Eng. 2020, 184, 107746.

    CAS  Google Scholar 

  36. Wang, Z. G.; Liu, W.; Liu, Y. H.; Ren, Y.; Li, Y. P.; Zhou, L.; Xu, J. Z.; Lei, J.; Li, Z. M. Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management. Compos. Part B: Eng. 2020, 180, 107569.

    CAS  Google Scholar 

  37. Cao, C. C.; Xue, Y. M.; Liu, Z. Y.; Zhou, Z.; Ji, J. W.; Song, Q. Q.; Hu, Q.; Fang, Y.; Tang, C. C. Scalable exfoliation and gradable separation of boric-acid-functionalized boron nitride nanosheets. 2D Mater. 2019, 6, 035014.

    CAS  Google Scholar 

  38. Wang, Z.; Zhu, Y. J.; Ji, D.; Li, Z. F.; Yu, H. B. Scalable exfoliation and high-efficiency separation membrane of boron nitride nanosheets. ChemistrySelect 2020, 5, 3567–3573.

    CAS  Google Scholar 

  39. Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849.

    CAS  Google Scholar 

  40. Deshmukh, A. R.; Jeong, J. W.; Lee, S. J.; Park, G. U.; Kim, B. S. Ultrasound-assisted facile green synthesis of hexagonal boron nitride nanosheets and their applications. ACS Sustainable Chem. Eng. 2019, 7, 17114–17125.

    CAS  Google Scholar 

  41. Wang, N.; Yang, G.; Wang, H. X.; Yan, C. Z.; Sun, R.; Wong, C. P. A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets. Mater. Today 2019, 27, 33–42.

    Google Scholar 

  42. Zhao, H. R.; Ding, J. H.; Shao, Z. Z.; Xu, B. Y.; Zhou, Q. B.; Yu, H. B. High-quality boron nitride nanosheets and their bioinspired thermally conductive papers. ACS Appl. Mater. Interfaces 2019, 11, 37247–37255.

    CAS  Google Scholar 

  43. Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu, B. Mass production of 2D materials by intermediate-assisted grinding exfoliation. Natl. Sci. Rev. 2020, 7, 324–332.

    CAS  Google Scholar 

  44. Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu, B. L. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724.

    CAS  Google Scholar 

  45. Marom, N.; Bernstein, J.; Garel, J.; Tkatchenko, A.; Joselevich, E.; Kronik, L.; Hod, O. Stacking and registry effects in layered materials: The case of hexagonal boron nitride. Phys. Rev. Lett. 2010, 105, 046801.

    Google Scholar 

  46. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  47. Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J. C.; Contreras-García, J.; Hénon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 2017, 19, 17928–17936.

    CAS  Google Scholar 

  48. Caldeweyher, E.; Ehlert, S.; Hansen, A.; Neugebauer, H.; Spicher, S.; Bannwarth, C.; Grimme, S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.

    Google Scholar 

  49. Kruse, H.; Grimme, S. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. J. Chem. Phys. 2012, 136, 154101.

    Google Scholar 

  50. Miura, K.; Sasaki, N.; Kamiya, S. Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip. Phys. Rev. B 2004, 69, 075420.

    Google Scholar 

  51. Nachtigall, P.; Arean, C. O. Themed issue on characterization of adsorbed species. Phys. Chem. Chem. Phys. 2010, 12, 6307–6308.

    CAS  Google Scholar 

  52. Zhao, G.; Wu, Y. Z.; Shao, Y. L.; Hao, X. P. Large-quantity and continuous preparation of two-dimensional nanosheets. Nanoscale 2016, 8, 5407–5411.

    CAS  Google Scholar 

  53. Wang, Z. G.; Lv, J. C.; Zheng, Z. L.; Du, J. G.; Dai, K.; Lei, J.; Xu, L.; Xu, J. Z.; Li, Z. M. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling. ACS Appl. Mater. Interfaces 2021, 13, 25325–25333.

    CAS  Google Scholar 

  54. Wang, J. M.; Liu, D.; Li, Q. X.; Chen, C.; Chen, Z. Q.; Naebe, M.; Song, P. A.; Portehault, D.; Garvey, C. J.; Golberg, D. et al. Nacre-bionic nanocomposite membrane for efficient in-plane dissipation heat harvest under high temperature. J. Materiomics 2021, 7, 219–225.

    CAS  Google Scholar 

  55. Ying, J. F.; Tan, X.; Lv, L.; Wang, X. Z.; Gao, J. Y.; Yan, Q. W.; Ma, H. B.; Nishimura, K.; Li, H.; Yu, J. H. et al. Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 2021, 15, 12922–12934.

    CAS  Google Scholar 

  56. Wang, Z. G.; Jin, Y. F.; Hong, R.; Du, J. G.; Dai, K.; Zhang, G. Q.; Gao, J. F.; Xu, L.; Xu, J. Z.; Li, Z. M. Dual-functional thermal management materials for highly thermal conduction and effectively heat generation. Compos. Part B: Eng. 2022, 242, 110084.

    CAS  Google Scholar 

  57. Guo, Q.; Wu, Z. Q.; He, H. H.; Zhou, H. H.; Liu, Y.; Chen, Y. H.; Liu, Z. G.; Gong, L.; Zhang, L. L.; Zhang, Q. Y. High-κ polyimide-based dielectrics by introducing a functionalized metal—organic framework. Inorg. Chem. 2022, 61, 3412–3419.

    CAS  Google Scholar 

  58. Chen, H.; Li, X. Q.; Yu, W. C.; Wang, J. Y.; Shi, Z. Q.; Xiong, C. X.; Yang, Q. L. Chitin/MoS2 nanosheet dielectric composite films with significantly enhanced discharge energy density and efficiency. Biomacromolecules 2020, 21, 2929–2937.

    CAS  Google Scholar 

  59. Gao, C. Q.; Shi, Y. Q.; Huang, R. Z.; Feng, Y. Z.; Chen, Y. J.; Zhu, S. C.; Lv, Y. C.; Shui, W.; Chen, Z. X. Creating multilayer-structured polystyrene composites for enhanced fire safety and electromagnetic shielding. Compos. Part B: Eng. 2022, 242, 110068.

    CAS  Google Scholar 

  60. Guo, Z. Z.; Ren, P. G.; Wang, J.; Tang, J. H.; Zhang, F. D.; Zong, Z.; Chen, Z. Y.; Jin, Y. L.; Ren, F. Multifunctional sandwich-structured magnetic-electric composite films with Joule heating capacities toward absorption-dominant electromagnetic interference shielding. Compos. Part B: Eng. 2022, 236, 109836.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52022061, 52103099, 51973138, and U21A2090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Guang Du or Jia-Zhuang Xu.

Electronic Supplementary Material

12274_2022_5123_MOESM1_ESM.pdf

Universal production of functionalized 2D nanomaterials via integrating glucose-assisted mechanochemical exfoliation and cosolvent-intensified sonication exfoliation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZG., Shen, HY., Yu, RL. et al. Universal production of functionalized 2D nanomaterials via integrating glucose-assisted mechanochemical exfoliation and cosolvent-intensified sonication exfoliation. Nano Res. 16, 5033–5041 (2023). https://doi.org/10.1007/s12274-022-5123-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5123-7

Keywords

Navigation