Skip to main content

Advertisement

Log in

Correlating corrosion inhibition to grain size in electrodeposited Ni-18Co

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This work describes corrosion studies on electrodeposited Ni-18Co bearing grain size in the nanocrystalline, ultra-fine-grained and microcrystalline range. The as-received Ni-18Co sheet had a nanocrystalline structure with an average grain size of 30 nm. Controlled annealing experiments at 500 °C and 700 °C provided material with average grain size values of 660 nm and 4.8 μm, respectively. Corrosion studies were conducted on the as-received and annealed material in de-aerated 0.1 M H2SO4. An inhibitor tryptamine was also added to the electrolyte for selected experiments to understand grain size-corrosion resistance correlations in the presence of the inhibitor. The inhibitor was found to mildly enhance the corrosion resistance of the nanocrystalline material but had negligible effect on the corrosion behaviour of the 500 °C and 700 °C annealed samples. The icorr of the nanocrystalline material was 9 × 10−6 A/cm2 which reduced to 5.3 × 10−6 A/cm2 on the addition of the inhibitor. On the other hand, the icorr of the 500 °C and 700 °C annealed samples were 10 × 10−6 A/cm2 and 10.3 × 10−6 A/cm2, respectively, which reduced marginally to 9.1 × 10−6 and 10.2 × 10−6 A/cm2 on the addition of the inhibitor. Microhardness measurements of the three materials revealed a reduction in the hardness following annealing with the hardness of the nanocrystalline material at 4100 MPa which reduced to 2250 and 1050 MPa for 500 °C and 700 °C annealed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.D. Ralston, N. Birbilis, Effect of grain size on corrosion: a review. Corrosion 66, 075001 (2010) 1-13

    Article  Google Scholar 

  2. K.D. Ralston, N. Birbilis, C.H.J. Davies, Revealing the relationship between grain size and corrosion rate of metals. Scr. Mater. 63, 1201–1204 (2010)

    Article  CAS  Google Scholar 

  3. G.B. Hamu, D. Eliezer, L. Wagner, The relation between severe plastic deformation microstructure and corrosion behaviour of AZ31 Magnesium alloy. J. Alloys Compd. 468, 222–229 (2009)

    Article  Google Scholar 

  4. C. Op’t Hoog, N. Birbilis, Y. Estrin, Corrosion of pure Mg as a function of grain size and processing route. Adv. Eng. Mater. 10(6), 579–582 (2008)

    Article  Google Scholar 

  5. C. Op’t Hoog, N. Birbilis, M.-X. Zhang, Y. Estrin, Surface grain size effects on corrosion of Magnesium. Key Eng. Mater. 384, 229–240 (2008)

    Article  Google Scholar 

  6. X.Y. Zhang, M.H. Shi, C. Li, N.F. Liu, Y.M. Wei, Mater. Sci. Eng. A 448, 259–263 (2007)

    Article  Google Scholar 

  7. N.P. Wasekar, N. Hebalkar, A. Jyothirmayi, B. Lavakumar, M. Ramakrishna, G. Sundararajan, Influence of pulse parameters on the mechanical properties and electrochemical corrosion behavior of electrodeposited Ni-W coatings with high tungsten content. Corros. Sci. 165, 108409 (2020)

    Article  CAS  Google Scholar 

  8. W. Luo, C. Qian, X.J. Wu, M. Yan, Electrochemical corrosion behaviour of nanocrystalline copper bulk. Mater. Sci. Eng. A 452-453, 524–528 (2007)

    Article  Google Scholar 

  9. A. Aledresse, A. Alfantazi, A study on the corrosion behaviour of nanostructured electrodeposited Cobalt. J. Mater. Sci. 39, 1523–1526 (2004)

    Article  CAS  Google Scholar 

  10. S. Tao, D.Y. Li, Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnology 17, 65–78 (2005)

    Article  Google Scholar 

  11. M. Hoseini, A. Shahryari, S. Omanovic, J.A. Szpunar, Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular processing. Corros. Sci. 51, 3064–3067 (2009)

    Article  CAS  Google Scholar 

  12. S. Gollapudi, Grain size distribution effects on corrosion behaviour of materials. Corros. Sci. 62, 90–94 (2012)

    Article  CAS  Google Scholar 

  13. E. McCafferty, Introduction to Corrosion Science (Springer, New York, 2010) ISBN: 978-1-4419-04553

    Book  Google Scholar 

  14. M. Finsgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros. Sci. 86, 17–41 (2014)

    Article  CAS  Google Scholar 

  15. C.M. Hansson, L. Mammoliti, B.B. Hope, Corrosion inhibitors in concrete-part I: the principles. Cem. Concr. Res. 28, 1775–1781 (1998)

    Article  CAS  Google Scholar 

  16. F. Su, C. Liu, P. Huang, Establishing relationships between electrodeposition techniques, microstructure and properties of nanocrystalline Co-W alloy coatings. J. Alloys Compd. 557, 228–238 (2013)

    Article  CAS  Google Scholar 

  17. S. Mathur, R. Jain, P. Kumar, K. Sachdev, S.K. Sharma, Effect of nanocrystalline phase on the electrochemical behaviour of the alloy Ti60Ni40. J. Alloys Compd. 538, 160–163 (2012)

    Article  CAS  Google Scholar 

  18. N. Elkhoshkhany, A. Hafnway, A. Khaled, Electrodeposition and corrosion behaviour of nanostructured Ni-WC and Ni-Co-WC composites coating. J. Alloys Compd. 695, 1505–1514 (2017)

    Article  CAS  Google Scholar 

  19. V. Afshari, C. Dehghanian, The effect of pure iron in a nanocrystalline grain size on the corrosion inhibitor behaviour of sodium benzoate in near-neutral aqueous solution. Mater. Chem. Phys. 124, 466–471 (2010)

    Article  CAS  Google Scholar 

  20. V. Afshari, C. Dehghanian, The influence of grain size of pure iron metal on corrosion inhibition in presence of sodium nitrite. 2nd Int Conf on Ultrafine Grained and Nanostructured Materials. Int. J. Mod. Phys.: Conf. 5, 793-800 (2012)

  21. A. Karimzadeh, M. Aliofkhazraei, F. Walsh, A review of electrodeposited Ni-Co alloy and composite coatings: microstructure, properties and applications. Surf. Coat. Technol. 372, 463–498 (2019)

    Article  CAS  Google Scholar 

  22. G. Moretti, F. Guidi, G. Grion, Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid. Corros. Sci. 46, 387–403 (2004)

    Article  CAS  Google Scholar 

  23. J.R. Davis (ed.), Introduction to Cobalt and Cobalt Alloys (ASM Specialty Handbook on Nickel, Cobalt and Their Alloys (ASM International, Ohio, 2000), p. 358

  24. G. Ibe, K. Lücke, Growth Selection During recrystallization of Single Crystals. Recrystallization, Grain Growth & Textures,  ASM, Metals Park (1965), pp. 434–447

  25. K. Lücke, The Formation of Recrystallization Textures in Metals and Alloys. ICOTOM-7, 7th Int. Conf. on Textures of Materials. Noordwijkerhout, Netherlands, vol 1 (1984) pp. 195–210

  26. A.D. Rollett, Crystallographic texture change during grain growth. JOM 56, 63–68 (2004)

    Article  CAS  Google Scholar 

  27. A.J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan, H. Gleiter, Mechanisms of grain growth in nanocrystalline fcc metals by molecular dynamics simulations. Mater. Sci. Eng. 318, 293–312 (2001)

    Article  Google Scholar 

  28. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, M. Ramakrishna, R.C. Gundakaram, T.N. Rao, G. Sundarajan, Controllable crystallographic texture in copper foils exhibiting enhanced mechanical and electrical properties by pulse reverse electrodeposition. Cryst Growth Des 15, 4448–4458 (2015)

    Article  CAS  Google Scholar 

  29. Z. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall-Petch effect-a survey of grain size strengthening studies in pure metals. Int. Mater. Rev. 61, 495512 (2016)

    Article  Google Scholar 

  30. M.J.N.V. Prasad, A.H. Chokshi, Superplasticity in electrodeposited nanocrystalline Nickel. Acta Mater. 58, 5724–5736 (2010)

    Article  CAS  Google Scholar 

  31. L. Monaco, G. Avramovic-Cingara, G. Palumbo, U. Erb, Corrosion behaviour of electrodeposited nickel-iron (Ni-Fe) alloys in dilute H2SO4. Corros. Sci. 130, 103–112 (2018)

    Article  CAS  Google Scholar 

  32. P. Lowmunkhong, D. Ungthararak, P. Sutthivaiyakit, Tryptamine as a corrosion inhibitor of mild steel in hydrochloric acid solution. Corros. Sci. 52, 30–36 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikant Gollapudi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gollapudi, S., Cai, W., Patibanda, S. et al. Correlating corrosion inhibition to grain size in electrodeposited Ni-18Co. emergent mater. 3, 989–997 (2020). https://doi.org/10.1007/s42247-020-00135-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00135-9

Keywords

Navigation