Skip to main content
Log in

Influence of Mechanical Attrition on Protective Properties of Anomalous Electrodeposited Ni-Co Alloys

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ni-Co alloys with different compositions were electrodeposited from additive-free Watt’s type electrolytes utilizing mechanical-assisted electrodeposition. SEM, XRD, microhardness, and potentiodynamic polarization tests were used to investigate the effects of mechanical attrition speed and electrolyte composition on electrodeposits. Increased attrition speed resulted in reduced Co content in films with fcc crystal structure and raised Co content in hcp crystal structures. The microhardness values raised significantly, while the corrosion resistance was reduced by applying mechanical attrition. In order to choose the best electrodeposit, the C factor—a ratio of hardness to corrosion current density—is introduced. Based on the C factor, the deposits with 4 at% (Co/Co + Ni) in electrolyte and attrition speed of 600 rpm were selected as the best condition, which resulted in an alloy with a smooth and reflective surface containing 32 at% (Co/Co + Ni) with a hardness of 480 HV and corrosion current density close to that of pure nickel electrodeposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karimzadeh A, Aliofkhazraei M, and Walsh F C, Surf Coat Technol 372 (2019) 463. https://doi.org/10.1016/j.surfcoat.2019.04.079

    Article  CAS  Google Scholar 

  2. Mishra R, and Balasubramaniam R, Corros Sci 46 (2004) 3019. https://doi.org/10.1016/j.corsci.2004.04.007

    Article  CAS  Google Scholar 

  3. Godon A, Creus J, Cohendoz S, Conforto E, and Savall C, Scr Mater 62 (2010) 403. https://doi.org/10.1016/j.scriptamat.2009.11.038

    Article  CAS  Google Scholar 

  4. Ebrahimi F, Bourne G R, Kelly M S, and Matthews T E, Nanostructured Mater 11 (1999) 343. https://doi.org/10.1016/S0965-9773(99)00050-1

    Article  CAS  Google Scholar 

  5. Dalla Torre F, Swygenhoven H V, and Victoria M, Acta Mater 50 (2002) 3957. https://doi.org/10.1016/S1359-6454(02)00198-2

    Article  ADS  CAS  Google Scholar 

  6. Wasekar N P, Haridoss P, Seshadri S K, and Sundararajan G, Wear 296 (2012) 536. https://doi.org/10.1016/j.wear.2012.08.003

    Article  CAS  Google Scholar 

  7. Rashidi A, and Amadeh A, Surf Coat Technol 204 (2009) 353. https://doi.org/10.1016/j.surfcoat.2009.07.036

    Article  CAS  Google Scholar 

  8. Pavlatou E A, Raptakis M, and Spyrellis N, Surf Coat Technol 201 (2007) 4571. https://doi.org/10.1016/j.surfcoat.2006.09.113

    Article  CAS  Google Scholar 

  9. El-Sherik A, and Erb U, J Mater Sci 30 (1995) 5743. https://doi.org/10.1007/BF00356715

    Article  ADS  CAS  Google Scholar 

  10. Das P, Samantaray B, Dolai S, Seshu K S, and Gollapudi S, Metall Mater Trans A 52 (2021) 1913. https://doi.org/10.1007/s11661-021-06202-y

    Article  CAS  Google Scholar 

  11. Lokhande A C, and Bagi J S, Surf Coat Technol 258 (2014) 225. https://doi.org/10.1016/j.surfcoat.2014.09.023

    Article  CAS  Google Scholar 

  12. Wang Y, Cheng S, Wei Q M, Ma E, and Hamza A, Scr Mater 51 (2004) 1023. https://doi.org/10.1016/j.scriptamat.2004.08.015

    Article  CAS  Google Scholar 

  13. Zhang X, Fujita T, Pan D, Yu J S, and Chen M W, Mater Sci Eng A 527 (2010) 2297. https://doi.org/10.1016/j.msea.2009.12.005

    Article  CAS  Google Scholar 

  14. Hu Y, Deb S, Li D, and Huang Q, Electrochim Acta 368 (2021) 137594. https://doi.org/10.1016/j.electacta.2020.137594

    Article  CAS  Google Scholar 

  15. Wu B, Xu B, Zhang B, and Dong S, Surf Coat Technol 201 (2007) 5758. https://doi.org/10.1016/j.surfcoat.2006.10.013

    Article  CAS  Google Scholar 

  16. Lv B, Hu Z, Wang X, and Xu B, Surf Coat Technol 270 (2015) 123. https://doi.org/10.1016/j.surfcoat.2015.03.012

    Article  CAS  Google Scholar 

  17. Ping Z, Ping Z, He Y, Gu C, and Zhang T, Surf Coat Technol 202 (2008) 6023. https://doi.org/10.1016/j.surfcoat.2008.06.183

    Article  CAS  Google Scholar 

  18. Ping Z, He Y, Gu C, and Zhang T, J Appl Electrochem 39 (2009) 6879. https://doi.org/10.1007/s10800-008-9734-9

    Article  CAS  Google Scholar 

  19. Idris J, Christian C, and Gaius E, J Nanomater 2013 (2013) 12. https://doi.org/10.1155/2013/841260

    Article  CAS  Google Scholar 

  20. Qiao G, Jing T, Wang N, Gao Y, and Wang W, Electrochim Acta 51 (2005) 85. https://doi.org/10.1016/j.electacta.2005.03.050

    Article  CAS  Google Scholar 

  21. Liu C, Su F, and Liang J, Surf Coat Technol 292 (2016) 37. https://doi.org/10.1016/j.surfcoat.2016.03.027

    Article  CAS  Google Scholar 

  22. He Y, Fu H F, Li X G, and Gao W, Scr Mater 58 (2008) 504. https://doi.org/10.1016/j.scriptamat.2007.10.051

    Article  CAS  Google Scholar 

  23. Eisner S, Trans IMF 51 (1973) 13. https://doi.org/10.1080/00202967.1973.11870257

    Article  CAS  Google Scholar 

  24. Ning Z, He Y, and Gao W, Surf Coat Technol 202 (2008) 2139. https://doi.org/10.1016/j.surfcoat.2007.08.062

    Article  CAS  Google Scholar 

  25. Zhaoxia P, YUAN J, HE Y, and LI X, Acta Metall Sin Engl Lett 22 (2009) 225. https://doi.org/10.1016/S1006-7191(08)60093-9

    Article  CAS  Google Scholar 

  26. Oriňáková R, Turoňová A, Kladeková D, Gálová M, and Smith R M, J Appl Electrochem 36 (2006) 957. https://doi.org/10.1007/s10800-006-9162-7

    Article  CAS  Google Scholar 

  27. Brenner A, Electrodeposition of Alloys: Practical and specific information, Vol 2, Elsevier (1963), ISBN: 978–1–4831–9807–1

  28. Li Y, Shan L, Sui Y, Qi J, and Liu J, J Mater Sci: Mater Electron 30 (2019) 13360. https://doi.org/10.1007/s10854-019-01703-4

    Article  CAS  Google Scholar 

  29. Zhang H, Lv Y, Wu X, Guo J, and Jia D, Chem Eng J 431 (2022) 133233. https://doi.org/10.1016/j.cej.2021.133233

    Article  CAS  Google Scholar 

  30. Matlosz M, J Electrochem Soc 140 (1993) 2272. https://doi.org/10.1149/1.2220807

    Article  CAS  Google Scholar 

  31. Zech N, Podlaha E, and Landolt D, J Electrochem Soc 146 (1999) 2886. https://doi.org/10.1149/1.1392024

    Article  CAS  Google Scholar 

  32. Grande W C, and Talbot J B, J Electrochem Soc 140 (1993) 675. https://doi.org/10.1149/1.2056141

    Article  CAS  Google Scholar 

  33. Chen Y, Yang H, Feng H, Yang P, and Shu B, Today Commun 35 (2023) 106058. https://doi.org/10.1016/j.mtcomm.2023.106058

    Article  CAS  Google Scholar 

  34. You Y H, Gu C D, Wang X L, and Tu J P, Surf Coat Technol 206 (2012) 3632. https://doi.org/10.1016/j.surfcoat.2012.03.001

    Article  CAS  Google Scholar 

  35. Bakhit B, and Akbari A, J Coat Technol Res 10 (2013) 285. https://doi.org/10.1007/s11998-012-9437-3

    Article  CAS  Google Scholar 

  36. Hu C, and Bai A, J Electrochem Soc 149 (2002) 615. https://doi.org/10.1149/1.1511753

    Article  CAS  Google Scholar 

  37. Golodnitsky D, Gudin N, and Volyanuk G, J Electrochem Soc 147 (2000) 4156. https://doi.org/10.1149/1.1394034

    Article  CAS  Google Scholar 

  38. Bai A, and Hu C, Electrochim Acta 47 (2002) 3447. https://doi.org/10.1016/S0013-4686(02)00281-5

    Article  CAS  Google Scholar 

  39. Go´ mez E, Ramirez J, and Valle´s E, J Appl Electrochem 28 (1998) 71. https://doi.org/10.1023/A:1003201919054

    Article  Google Scholar 

  40. Liu P, Chen D, Wang Q, Xu P, Long M, and Duan H, J Phys Chem Solids 137 (2020) 1. https://doi.org/10.1016/j.jpcs.2019.109194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Abbasi Chianeh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, K., Chianeh, V.A. Influence of Mechanical Attrition on Protective Properties of Anomalous Electrodeposited Ni-Co Alloys. Trans Indian Inst Met 77, 607–614 (2024). https://doi.org/10.1007/s12666-023-03148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-03148-0

Keywords

Navigation