Skip to main content

Advertisement

Log in

Mechanical properties of gamma irradiated TiO2NPs/MWCNTs/LDPE hybrid nanocomposites

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This work investigates the impact of ϒ-irradiation on the mechanical properties of titanium oxide nanoparticles (TiO2NPs)/multi-walled carbon nanotubes (MWCNTs) hybrid low-density polyethylene (LDPE) nanocomposites. Hybrid LDPE nanocomposite films prepared using melt mixing technique were exposed to different doses of ϒ-radiation, ranging from 5 to 50 kGy. The tensile strength was diminished after TiO2NP or MWCNT addition, then increased with a further increase in the carbon nanotube (CNT) content. This behavior can be ascribed to stress transfer between the filler and the LDPE network. Besides, the tensile strength was enhanced after exposure to a dosage of 5 and 25 kGy of ϒ-radiation, then followed by a decline when exposed to 50 kGy, especially in the case of hybrid films due to the degradation and cross-linking of LDPE chains caused by ϒ-radiation. Because of the absorbance and antioxidant effects of CNTs, the CNT addition retarded the degradation of LDPE networks and decreased the catalytic activity of TiO2NPs to activate degradation upon radiation exposure. Therefore, the tensile strength was retained after exposure to a dose of 50 kGy of ϒ-radiation, especially in case of less TiO2NPs and more CNTs filled hybrid films. Furthermore, the % of the total elongation at break is decreased after incorporating MWCNTs. The % of the total elongation at break after exposure to a dosage of 25 kGy was reduced as a result of chain scissions and molecular weight decrease. Young’s modulus of the irradiated composites was lower than without irradiation. This effect was more significant for neat LDPE and TiO2NPs filled LDPE films, whereas MWCNTs had some stability effects on the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.S. Chum, K.W. Swogger, Olefin polymer technologies-history and recent progress at The Dow Chemical Company. Prog. Polym. Sci. 33, 797–819 (2008)

    Article  CAS  Google Scholar 

  2. A. Ammala, S. Bateman, K. Dean, E. Petinakis, P. Sangwan, S. Wong, Q. Yuan, L. Yu, C. Patrick, K.H. Leong, An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 36, 1015–1049 (2011)

    Article  CAS  Google Scholar 

  3. J.N. Hahladakis, C.A. Velis, R. Weber, E. Iacovidou, P. Purnell, An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 344, 179–199 (2018)

    Article  CAS  Google Scholar 

  4. M.M. Chamakh, D. Ponnamma, M.A.A. Al-Maadeed, Vapor sensing performances of PVDF nanocomposites containing titanium dioxide nanotubes decorated multi-walled carbon nanotubes. J. Mater. Sci. Mater. Electron. 29, 4402–4412 (2018)

    Article  CAS  Google Scholar 

  5. M.J. Al-Marri, M.S. Masoud, A.M.G. Nassar, M.M. Zagho, M.M. Khader, Synthesis and characterization of poly(vinyl alcohol): Cloisite® 20A nanocomposites. J. Vinyl Addit. Technol. 23, 181–187 (2017)

    Article  CAS  Google Scholar 

  6. A.M. Al-Enizi, M.M. Zagho, A.A. Elzatahry, Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials 8, 259 (2018)

    Article  Google Scholar 

  7. Zagho, M.M.; Hussein, E.A.; Elzatahry, A.A. Recent overviews in functional polymer composites for biomedical applications. Polymers (Basel). 2018

  8. L. Kabalan, M.M. Zagho, M.J. Al-Marri, M.M. Khader, Experimental and theoretical studies on the mechanical and structural changes imposed by the variation of clay loading on poly(vinyl alcohol)/cloisite® 93A nanocomposites. J. Vinyl Addit. Technol. (2018)

  9. S. Nambiar, J.T.W. Yeow, Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 5717–5726 (2012)

    Article  CAS  Google Scholar 

  10. V.T. Rathod, J.S. Kumar, A. Jain, Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. 7, 519–548 (2017)

    Article  CAS  Google Scholar 

  11. M. Nicoletto, D. Boschetti, M. Giorcelli, P. Savi, MWCNTs nanocomposites for space applications (In Proceedings of the Joint IEEE International Symposium on Electromagnetic Compatibility and EMCAt, Dresden, 2015)

    Book  Google Scholar 

  12. K.A. Murray, J.E. Kennedy, B. McEvoy, O. Vrain, D. Ryan, R. Cowman, C.L. Higginbotham, The effects of high energy electron beam irradiation in air on accelerated aging and on the structure property relationships of low density polyethylene. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 297, 64–74 (2013)

    Article  CAS  Google Scholar 

  13. P.B. Willis, C.-H. Hsieh, Polymeric materials. Kobunshi 49, 52–56 (2000)

    Article  CAS  Google Scholar 

  14. S. Guetersloh, C. Zeitlin, L. Heilbronn, J. Miller, T. Komiyama, A. Fukumura, Y. Iwata, T. Murakami, M. Bhattacharya, Polyethylene as a radiation shielding standard in simulated cosmic-ray environments. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 252, 319–332 (2006)

    Article  CAS  Google Scholar 

  15. S. Paszkiewicz, A. Szymczyk, D. Pawlikowska, J. Subocz, M. Zenker, R. Masztak, Electrically and thermally conductive low density polyethylene-based nanocomposites reinforced by MWCNT or hybrid MWCNT/graphene nanoplatelets with improved thermo-oxidative stability. Nanomaterials 8, 264 (2018)

    Article  Google Scholar 

  16. M. Moniruzzaman, K.I. Winey, Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006)

    Article  CAS  Google Scholar 

  17. J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon N. Y. 44, 1624–1652 (2006)

    Article  CAS  Google Scholar 

  18. M.M. Zagho, M.A.A. AlMaadeed, K. Majeed, Thermal properties of TiO2 NP/CNT/LDPE hybrid nanocomposite films. Polymers (Basel) 10, 1270 (2018)

    Article  Google Scholar 

  19. Y.N. Smirnov, S.R. Allayarov, V.A. Lesnichaya, Y.A. Ol’khov, G.P. Belov, D.A. Dixon, The effect of gamma-radiation on polymer composites based on thermoplastic matrices. High Energy Chem. 43, 449–455 (2009)

    Article  CAS  Google Scholar 

  20. Y.N. Smirnov, Y.A. Ol’khov, S.R. Allayarov, V.A. Lesnichaya, G.P. Belov, A study of the radiolysis of polyethylene and the polyethylene matrix in glass-fibre-reinforced plastic. Int. Polym. Sci. Technol. 36, 39–42 (2009)

    Article  Google Scholar 

  21. J. Yang, X. Li, C. Liu, E. Rui, L. Wang, Effects of electron irradiation on LDPE/MWCNT composites. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 365, 55–60 (2015)

    Article  CAS  Google Scholar 

  22. M.M. Zagho, M.A.A. AlMaadeed, K. Majeed, Role of TiO2 and carbon nanotubes on polyethylene, and effect of accelerated weathering on photo oxidation and mechanical properties. J. Vinyl Addit. Technol., 1–7 (2018)

  23. M.J. Martínez-Morlanes, P. Castell, V. Martínez-Nogués, M.T. Martinez, P.J. Alonso, J.A. Puértolas, Effects of gamma-irradiation on UHMWPE/MWNT nanocomposites. Compos. Sci. Technol. 71, 282–288 (2011)

    Article  Google Scholar 

  24. M.J. Martínez-Morlanes, P. Castell, P.J. Alonso, M.T. Martinez, J.A. Puértolas, Multi-walled carbon nanotubes acting as free radical scavengers in gamma-irradiated ultrahigh molecular weight polyethylene composites. Carbon N. Y. 50, 2442–2452 (2012)

    Article  Google Scholar 

  25. P.S. Rama Sreekanth, N. Naresh Kumar, S. Kanagaraj, Improving post irradiation stability of high density polyethylene by multi walled carbon nanotubes. Compos. Sci. Technol. 72, 390–396 (2012)

    Article  CAS  Google Scholar 

  26. C.H. Jung, D.H. Lee, I.T. Hwang, D.S. Im, J. Shin, P.H. Kang, J.H. Choi, Fabrication and characterization of radiation-resistant LDPE/MWCNT nanocomposites. J. Nucl. Mater., 438 (2013)

  27. P. Castell, F.J. Medel, M.T. Martinez, J.A. Puertolas, Influence of gamma irradiation on carbon nanotube-reinforced polypropylene. J. Nanosci. Nanotechnol. 9, 6055–6063 (2009)

    Article  CAS  Google Scholar 

  28. C. Pirlot, Z. Mekhalif, A. Fonseca, J.B. Nagy, G. Demortier, J. Delhalle, Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams. Chem. Phys. Lett. 372, 595–602 (2003)

    Article  CAS  Google Scholar 

  29. A. Sodagar, M.S.A. Akhoundi, A. Bahador, Y.F. Jalali, Z. Behzadi, F. Elhaminejad, A.H. Mirhashemi, Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in orthodontics. Dental Press J. Orthod. 22, 67–74 (2017)

    Article  Google Scholar 

  30. Y. Tong, Y. Li, F. Xie, M. Ding, Preparation and characteristics of polyimide-TiO2 nanocomposite film. Polym. Int. 49, 1543–1547 (2000)

    Article  CAS  Google Scholar 

  31. K. Majeed, M.A.A. AlMaadeed, M.M. Zagho, Comparison of the Effect of Carbon, Halloysite and Titania Nanotubes on the Mechanical and Thermal Properties of LDPE Based Nanocomposite Films. Chinese J. Chem. Eng. (2017)

  32. T. Zaharescu, S. Jipa, E.D. Popescu, C. Oros, Dielectric properties of gamma irradiated PP/TiO2 nanocomposites. Mater. Plast. 45, 285–288 (2008)

    CAS  Google Scholar 

  33. S.F. Hamad, N. Stehling, S.A. Hayes, J.P. Foreman, C. Rodenburg, Exploiting plasma exposed, natural surface nanostructures in ramie fibers for polymer composite applications. Materials (Basel) 12, 1631 (2019)

    Article  CAS  Google Scholar 

  34. M. Madani, Structure, optical and thermal decomposition characters of LDPE graft copolymers synthesized by gamma irradiation. Curr. Appl. Phys. 11, 70–76 (2011)

    Article  Google Scholar 

  35. A. Hassani, A. Khataee, S. Karaca, C. Karaca, P. Gholami, Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 35, 251–262 (2017)

    Article  CAS  Google Scholar 

  36. J. Klanwan, N. Akrapattangkul, V. Pavarajarn, T. Seto, Y. Otani, T. Charinpanitkul, Single-step synthesis of MWCNT/ZnO nanocomposite using co-chemical vapor deposition method. Mater. Lett. 64, 80–82 (2010)

    Article  CAS  Google Scholar 

  37. R.J. Nussbaumer, W.R. Caseri, P. Smith, T. Tervoort, Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol. Mater. Eng. 288, 44–49 (2003)

    Article  CAS  Google Scholar 

  38. H. Runqin, N. Fenglian, C. Qiuxiang, Mechanical properties of TiO2-filled CNT/PMMA composites. J. Exp. Nanosci. 12, 308–318 (2017)

    Article  Google Scholar 

  39. M.M. Hassan, Synergistic effect of montmorillonite-clay and gamma irradiation on the characterizations of waste polyamide copolymer and reclaimed rubber powder nanocomposites. Compos. Part B Eng. 79, 28–34 (2015)

    Article  CAS  Google Scholar 

  40. S.P. Thomas, M. Rahaman, I.A. Hussein, Impact of aspect ratio and CNT loading on the dynamic mechanical and flammability properties of polyethylene nanocomposites. E-Polymers 14, 57–63 (2014)

    Article  CAS  Google Scholar 

  41. L.W. McKeen, The Effect of UV Light and Weather on Plastics and Elastomers, 4th edn. (Elsevier, 2019)

Download references

Acknowledgments

The authors gratefully acknowledge and thank the Department of Physics, Qatar University, for allowing them to use their ϒ-radiation facility.

Funding

This work was made possible by NPRP Grant 5-0-39-2-0-14 from the Qatar National Research Fund (a member of Qatar Foundation).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moustafa M. Zagho or Mariam Al Ali AlMaadeed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zagho, M.M., AlMaadeed, M.A.A. & Majeed, K. Mechanical properties of gamma irradiated TiO2NPs/MWCNTs/LDPE hybrid nanocomposites. emergent mater. 3, 675–683 (2020). https://doi.org/10.1007/s42247-020-00115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00115-z

Keywords

Navigation