Skip to main content

Advertisement

Log in

Research progress of TiFe-based hydrogen storage alloys

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

After being activated, TiFe alloys are widely concerned for their high hydrogen storage density due to their large reversible absorption and desorption capacity of hydrogen at room temperature, low price, abundant resources, moderate hydride decomposition pressure, and good hydrogen absorption and desorption kinetic performance. Meanwhile, TiFe alloys can be used as anode materials for secondary batteries, catalysts for hydrogenation, and storage media for thermal, solar, and wind energy, which has wide industrial application prospects. However, TiFe alloys have disadvantages such as difficult activation, easy toxicity, and large hysteresis. This review introduces the current research status and performance characteristics of TiFe-based hydrogen storage alloys, the phase structure, hydride phase structure, kinetic and thermodynamic models of TiFe alloys, as well as the application prospects of TiFe-based hydrogen storage alloys in practical production and the ways to improve their hydrogen storage performance, and presents the views on the future research priorities and development directions of TiFe-based hydrogen storage alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

modified by CVD deposition of 0.5 wt.% (a, b) and 1 wt.% (c, d) Pd [105]

Similar content being viewed by others

References

  1. M.S. Dresselhaus, I.L. Thomas, Nature 414 (2001) 353–358.

    Article  Google Scholar 

  2. Y.C. Liu, Y. Qi, W. Zhang, J.L. Gao, Y.H. Zhang, J. Iron Steel Res. Int. 27 (2020) 1236–1246.

    Article  Google Scholar 

  3. Y.H. Zhang, P.J. Zhang, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Rare Earth 33 (2015) 874–883.

    Article  Google Scholar 

  4. Y.H. Zhang, K.F. Zhang, Z.M. Yuan, Y.Q. Li, H.W. Shang, Y. Qi, X.P. Dong, D.L. Zhao, J. Iron Steel Res. Int. 25 (2018) 1255–1264.

    Article  Google Scholar 

  5. Y.H. Zhang, W. Zhang, Z.M. Yuan, W.G. Bu, Y. Qi, S.H. Guo, J. Iron Steel Res. Int. 27 (2020) 952–963.

    Article  Google Scholar 

  6. B. Bogdanovic, T.H. Hartwig, B. Splieth off, Int. J. Hydrogen Energy 18 (1993) 575–589.

    Article  Google Scholar 

  7. B. Johnston, M.C. Mayo, A. Khare, Technovation 25 (2005) 569–585.

    Article  Google Scholar 

  8. A. Reiser, B. Bogdanovic, K. Schlichte, Int. J. Hydrogen Energy 25 (2000) 425–430.

    Article  Google Scholar 

  9. X.H. Wang, C.Y. Wang, C.P. Chen, Q.D. Wang, J. Alloy. Compd. 420 (2005) 107–110.

    Article  Google Scholar 

  10. J. Prigent, J.M. Joubert, M. Gupta, J. Solid State Chem. 184 (2011) 123–133.

    Article  Google Scholar 

  11. Y.H. Zhang, Z.M. Yuan, H.W. Shang, Y.Q. Li, Y. Qi, D.L. Zhao, Metall. Mater. Trans. A 48 (2017) 2472–2482.

    Article  Google Scholar 

  12. M.J. Choi, H.S. Hong, K.S. Lee, J. Alloy. Compd. 358 (2003) 306–311.

    Article  Google Scholar 

  13. S. Semboshi, N. Masahashi, S. Hanada, J. Alloy. Compd. 352 (2003) 210–217.

    Article  Google Scholar 

  14. J.A. Murshidi, M. Paskevicius, D.A. Sheppard, C.E. Buckley, Int. J. Hydrogen Energy 36 (2011) 7587–7593.

    Article  Google Scholar 

  15. S.J. Zhou, X. Zhang, L. Wang, Y.Y. Zhao, W. Xiong, B.Q. Li, J. Li, J. Xu, H.Z. Yan, Int. J. Hydrogen Energy 46 (2021) 3414–3424.

    Article  Google Scholar 

  16. N. Endo, E. Shimoda, K. Goshome, T. Yamane, T. Nozu, T. Maeda, Int. J. Hydrogen Energy 45 (2020) 207–215.

    Article  Google Scholar 

  17. X.Y Zhao, J.F. Zhou, X.D. Shen, M. Yang, L.Q. Ma, Int. J. Hydrogen Energy 37 (2012) 5050–5055.

    Article  Google Scholar 

  18. K.B. Park, T.W. Na, Y.D. Kim, J.Y. Park, J.W. Kang, H.S. Kang, K. Park, H.K. Park, Int. J. Hydrogen Energy 46 (2021) 13082–13087.

    Article  Google Scholar 

  19. P. Modi, K.F. Aguey-Zinsou, Int. J. Hydrogen Energy 44 (2019) 16757–16764.

    Article  Google Scholar 

  20. Z.W. Chen, X.Z. Xiao, L.X. Chen, X.L. Fan, L.X. Liu, S.Q. Li, H.W. Ge, Q.D. Wang, Int. J. Hydrogen Energy 38 (2013) 12803–12810.

    Article  Google Scholar 

  21. J.J. Reilly, R.H. Wiswall, Inorg. Chem. 13 (1974) 218–222.

    Article  Google Scholar 

  22. E.I.L. Gómez, K. Edalati, F.J. Antiqueira, D.D. Coimbrão, G. Zepon, D.R. Leiva, T.T. Ishikawa, M. Jorge. Cubero-Sesin, W.J. Botta, Adv. Eng. Mater 22 (2020) 2000011.

  23. F.Q. Guo, K. Namba, H. Miyaoka, J. Ankur, I. Takayuki, Mater. Lett. X 9 (2021) 100061.

    Google Scholar 

  24. T. Ha, S.I. Lee, J. Hong, Y.S. Lee, D.I. Kim, J.Y. Suh, Y.W. Cho, B. Hwang, J. Lee, J.H. Shim, J. Alloy. Compd. 853 (2021) 157099.

  25. C. Corgnale, T. Motyka, S. Greenway, J.M. Perez-Berrios, A. Nakano, H. Ito, T. Maedac, J. Alloy. Compd. 580 (2013) S406–S409.

    Article  Google Scholar 

  26. R. Wakabayashi, S. Sasaki, I. Saita, M. Sato, H. Uesugi, T. Akiyama, J. Alloy. Compd. 480 (2009) 592–595.

    Article  Google Scholar 

  27. K. Hiebl, E. Tuscher, H. Bittner, Monatsh. Chem. 110 (1979) 9–19.

    Article  Google Scholar 

  28. J.G. Li, X.J. Jiang, Z.N. Li, L.J. Jiang, X.G. Li, Int. J. Energy Res. 43 (2019) 5759–5774.

    Article  Google Scholar 

  29. L. Luo, Y.Z. Li, T.T. Zhai, F. Hu, Z.W. Zhao, X. Bian, W.Y. Wu, Int. J. Hydrogen Energy 44 (2019) 25188–25198.

    Article  Google Scholar 

  30. K. Sakine, R. Mohammad, H. Jacques, J. Alloy. Compd. 775 (2019) 912–920.

    Article  Google Scholar 

  31. H.W. Shang, Y.Q. Li, Y.H. Zhang, Y. Qi, S.H. Guo, D.L. Zhao, Int. J. Hydrogen Energy 43 (2018) 19091–19101.

    Article  Google Scholar 

  32. H.Y. Leng, Z.G. Yu, Q. Luo, J. Yin, N. Miao, Q. Li, K.C. Chou, Int. J. Hydrogen Energy 45 (2020) 19553–19560.

    Article  Google Scholar 

  33. G.K. Sujan, Z. Pan, H. Li, D. Liang, N. Alam, Crit. Rev. Solid. State 45 (2019) 410–427.

    Article  Google Scholar 

  34. A.M. Van der Kraan, K.H.J. Buschow, Phys. B+C 138 (1986) 55–62.

  35. P. Thompson, M.A. Pick, F. Reidinger, L.M. Corliss, J.M. Hasting, J.J. Reilly, J. Phys. F Met. Phys. 8 (1978) 75–80.

    Article  Google Scholar 

  36. K. Benyelloul, Y. Bouhadda, M. Bououdina, H.I. Faraoun, H. Aourag, L. Seddik, Int. J. Hydrogen Energy 39 (2014) 12667–12675.

    Article  Google Scholar 

  37. M. Polanski, M. Kwiatkowska, I. Kunce, J. Bystrzycki, Int. J. Hydrogen Energy 38 (2013) 12159–12171.

    Article  Google Scholar 

  38. E.D. Koultoukis, S.S. Makridis, L. Röntzsch, E. Pavlidou, A. Ioannidou, E.S. Kikkinides, A.K. Stubos, J. Nanosci. Nanotechno. 12 (2012) 4688–4696.

    Article  Google Scholar 

  39. M. Bououdina, D. Fruchart, S. Jacquet, L. Pontonnier, J. LSoubeyroux, Int. J. Hydrogen Energy 24 (1999) 885–890.

  40. E. Solomin, I. Kiipichnikova, R. Amerkhanov, D. Korobatov, M. Lutovats, A. Martyanov, Int. J. Hydrogen Energy 44 (2019) 3433–3449.

    Article  Google Scholar 

  41. H.J. Ahn, S.M. Lee, J.Y. Lee, J. Less Common Met. 142 (1988) 253–261.

    Article  Google Scholar 

  42. A. Kinaci, M.K. Aydinol, Int. J. Hydrogen Energy 32 (2007) 2466–2474.

    Article  Google Scholar 

  43. K. Takahashi, S. Isobe, Chem. Phys. 16 (2014) 16765–16770.

    Google Scholar 

  44. N. Endo, H. Saitoh, A. Machida, Y. Katayama, Int. J. Hydrogen Energy 38 (2013) 6726–6729.

    Article  Google Scholar 

  45. Y.H. Zhang, X. Wei, Z.M. Yuan, Z.H. Hou, Y. Qi, S.H. Guo, J. Phys. Chem. S 138 (2020) 109252.

  46. T. Yang, P. Wang, C.Q. Xia, N. Liu, C.Y. Liang, F.X. Yin, Q. Li, Int. J. Hydrogen Energy 45 (2020) 12071–12081.

    Article  Google Scholar 

  47. P. Ahmadi, S.H. Torabi, H. Afsaneh, Y. Sadegheih, H. Ganjehsarabi, M. Ashjaee, Int. J. Hydrogen Energy 45 (2020) 3595–3608.

    Article  Google Scholar 

  48. S.A. Archer, R. Steinberger-Wilckens, Int. J. Hydrogen Energy 43 (2018) 23178–23192.

    Article  Google Scholar 

  49. W.F. Wang, G.C. Xu, L. Zhang, C.P. Ma, Y.M. Zhao, H.M. Zhang, Z.M. Ding, Y.K. Fu, Y. Li, S.M. Han, J. Alloy. Compd. 861 (2021) 158469.

  50. W. Zuo, J.Q. E, X.L. Liu, Q.G. Peng, Y.W. Deng, H. Zhu, Appl. Therm. Eng. 103 (2016) 945–951.

  51. S. Niaz, T. Manzoor, A.H. Pandith, Renew. Sustain. Energy Rev. 50 (2015) 457–469.

    Article  Google Scholar 

  52. A. Dogan, Y. Kaplan, T.N. Veziroglu, Appl. Math. Comput. 150 (2004) 169–180.

    MathSciNet  Google Scholar 

  53. A.K. Phate, M.P. Maiya, S.S. Murthy, Int. J. Hydrogen Energy 32 (2007) 1969–1981.

    Article  Google Scholar 

  54. P. Muthukumar, A. Satheesh, U. Madhavakrishna, A. Dewan, Energy Convers. Manage. 50 (2009) 69–75.

    Article  Google Scholar 

  55. K. Aldas, M.D. Mat, Y. Kaplan, Int. J. Hydrogen Energy 27 (2002) 1049–1056.

    Article  Google Scholar 

  56. Y. Wang, X.C. Adroher, J.X. Chen, G. Yang, T. Miller, J. Power Sources 194 (2009) 997–1006.

    Article  Google Scholar 

  57. D. Mori, N. Kobayashi, T. Shinozawa, T. Matsunaga, H. Kubo, K. Toh, M. Tsuzuki, J. Japan Inst. Metals 69 (2005) 308–311.

    Article  Google Scholar 

  58. E. Jankowska, M. Makowiecka, M. Jurczyk, J. Alloy. Compd. 404-406 (2005) 691–693.

    Article  Google Scholar 

  59. P.F. Xiao, W.H. Hu, X. Xu, W. Liu, Q. Huang, Z. Chen, Int. J. Hydrogen Energy 45 (2020) 24412–24423.

    Article  Google Scholar 

  60. P. Lv, Z.C. Liu, V. Dixit, Int. J. Hydrogen Energy 44 (2019) 27843–27852.

    Article  Google Scholar 

  61. K. Edalati, J. Matsuda, A. Yanagida, E. Akiba, Z. Horita, Int. J. Hydrogen Energy 39 (2014) 15589–15594.

    Article  Google Scholar 

  62. J.Y. Jung, Y.S. Lee, J.Y. Suh, J.Y. Huh, Y.W. Cho, J. Alloy. Compd. 854 (2021) 157263.

  63. T.Z. Si, X.Y. Zhang, J.J. Feng, X.L. Ding, Y.T. Li, Rare Met. 40 (2021) 995–1002.

    Article  Google Scholar 

  64. R. Gremaud, C.P. Broedersz, D.M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J.H. Rector, B. Dam, R. Griessen, Adv. Mater. 19 (2007) 2813–2817.

    Article  Google Scholar 

  65. H. Hotta, M. Abe, T. Kuji, H. Uchida, J. Alloy. Compd. 439 (2007) 221–226.

    Article  Google Scholar 

  66. M. Jurczyk, L. Smardz, M. Makowiecka, E. Jankowska, K. Smardz, J. Phys. Chem. Solids 65 (2004) 545–548.

    Article  Google Scholar 

  67. M.H. Mintz, S. Vaknin, S. Biderman, J. Appl. Phys. 52 (1981) 463–467.

    Article  Google Scholar 

  68. S.M. Lee, T.P. Perng, J. Alloy. Compd. 291 (1999) 254–261.

    Article  Google Scholar 

  69. S.M. Lee, T.P. Perng, Int. J. Hydrogen Energy 19 (1994) 259–263.

    Article  Google Scholar 

  70. H. Nagai, K. Kitagaki, K. Shoji, J. Less Common Met. 134 (1987) 275–286.

    Article  Google Scholar 

  71. V. Zadorozhnyy, E. Berdonosova, C. Gammer, J. Eckert, M. Zadorozhnyy, A. Bazlov, M. Zheleznyi, S. Kaloshkin, S. Klyamkin, J. Alloy. Compd. 796 (2019) 42–46.

    Article  Google Scholar 

  72. A. Guéguen, M. Latroche, J. Alloy. Compd. 509 (2011) 5562–5566.

    Article  Google Scholar 

  73. C. Gosselin, J. Huot, Materials 8 (2015) 7864.

    Article  Google Scholar 

  74. S.M. Lee, T.P. Perng, Int. J. Hydrogen Energy 25 (2000) 831–836.

    Article  Google Scholar 

  75. Y.F. Liu, H.G. Pan, Y.J. Yue, X.F. Wu, N. Chen, Y.Q. Lei, J. Alloy. Compd. 395 (2005) 291–299.

    Article  Google Scholar 

  76. P. Jain, C. Gosselin, J. Huot, Int. J. Hydrogen Energy 40 (2015) 16921–16927.

    Article  Google Scholar 

  77. A.K. Patel, A. Duguay, B. Tougas, C. Schade, P. Sharma, J. Huot, Int. J. Hydrogen Energy 45 (2020) 787–797.

    Article  Google Scholar 

  78. P. Lv, J. Huot, Int. J. Hydrogen Energy 41 (2016) 22128–22133.

    Article  Google Scholar 

  79. A.K. Patel, B. Tougas, P. Sharma, J. Huot, J. Mater Res. Technol. 8 (2019) 5623–5630.

    Article  Google Scholar 

  80. Y.Q. Li, H.W. Shang, Y.H. Zhang, P. Li, Y. Qi, D.L. Zhao, Int. J. Hydrogen Energy 44 (2019) 4240–4252.

    Article  Google Scholar 

  81. J. Suzuki, M. Abe, T. Yamaguchi, S. Terazawa, J. Less Common Met. 131 (1987) 301–309.

    Article  Google Scholar 

  82. J.X. Ma, H.G. Pan, X.H. Wang, C.P. Chen, Q.D. Wang, Int. J. Hydrogen Energy 25 (2000) 779–782.

    Article  Google Scholar 

  83. E.M. Dematteis, F. Cuevas, M. Latroche, J. Alloy. Compd. 851 (2021) 156075.

  84. E.M. Dematteis, N. Berti, F. Cuevas, M. Latroche, M. Baricco, Mater Adv. 2 (2021) 2524–2560.

    Article  Google Scholar 

  85. V. Bronca, P. Bergman, V. Ghaemmaghami, D. Khatamian, F.D. Manchester, J. Less Common Met. 108 (1985) 313–325.

    Article  Google Scholar 

  86. B.K. Singh, A.K. Singh, O.N. Srivastava, Int. J. Hydrogen Energy 21 (1996) 111–117.

    Article  Google Scholar 

  87. P. Jain, C. Gosselin, N. Skryabina, D. Fruchart, J. Huot, J. Alloy. Compd. 636 (2015) 375–380.

    Article  Google Scholar 

  88. P. Lv, J. Huot, Energy 138 (2017) 375–382.

    Article  Google Scholar 

  89. M. Abe, T. Kuji, J. Alloy. Compd. 446-447 (2007) 200–203.

    Article  Google Scholar 

  90. J.L. Iturbe-García, D.L. Peña- Ferreyra, Int. J. Hydrogen Energy 45 (2020) 28383–28393.

  91. V.Y. Zadorozhnyy, S.N. Klyamkin, M.Y. Zadorozhnyy, O.V. Bermesheva, S.D. Kaloshkin, J. Alloy. Compd. 586 (2014) S56–S60.

    Article  Google Scholar 

  92. V.Y. Zadorozhnyy, S.N. Klyamkin, M.Y. Zadorozhnyy, M.V. Gorshenkov, S.D. Kaloshkin, J. Alloy. Compd. 615 (2014) S569–S572.

    Article  Google Scholar 

  93. H. Emami, K. Edalati, J. Matsuda, E. Akiba, Z. Horita, Acta Meter. 88 (2015)190–195.

    Article  Google Scholar 

  94. A. Zeaiter, D. Chapelle, F. Cuevas, A. Maynadier, M. Latroche, Powder Technol. 339 (2018) 903–910.

    Article  Google Scholar 

  95. K. Edalati, J. Matsuda, H. Iwaoka, H. Toh, E. Akiba, Z. Horita, Int. J. Hydrogen Energy 38 (2013) 4622–4627.

    Article  Google Scholar 

  96. K. Edalati, J. Matsuda, M. Arita, T. Daio, E. Akiba, Z. Horita, Appl. Phys. Lett. 103 (2013) 143902.

  97. K. Edalati, M. Matsuo, H. Emami, S. Itano, A. Alhamidi, A. Staykov, D.J. Smith, S. Orimo, E. Akiba, Z. Horita, Scripta Mater. 124 (2016) 108–111.

    Article  Google Scholar 

  98. J. Manna, B. Tougas, J. Huot, Int. J. Hydrogen Energy 43 (2018) 20795–20800.

    Article  Google Scholar 

  99. J. Manna, B. Tougas, J. Huot, Int. J. Hydrogen Energy 45 (2020) 11625–11631.

    Article  Google Scholar 

  100. L.E.R. Vega, D.R. Leiva, R.M. Leal Neto, W.B. Silva, R.A. Silva, T.T. Ishikawa, C.S. Kiminami, W.J. Botta, Int. J. Hydrogen Energy 43 (2018) 2913–2918.

  101. B. Abrashev, T. Spassov, S. Bliznakov, A. Popov, Int. J. Hydrogen Energy 35 (2010) 6332–6337.

    Article  Google Scholar 

  102. A. Zeaiter, D. Chapelle, F. Cuevas, A. Maynadier, M. Latroch, Powder Technol. 339 (2018) 903–910.

    Article  Google Scholar 

  103. W. Wang, C.P. Chen, H.O. Xu, H.B. Li, Q.D. Wang, Rare Metals (Eng. Ed.) 20 (2001) 265–269.

  104. M. Lue, H.H. Zhang, Y.L. Wang, W.D. Wei, Scripta Mater. 29 (1993) 1253–1258.

    Article  Google Scholar 

  105. M.W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, Y. Klochko, Int. J. Hydrogen Energy 36 (2011) 9743–9750.

    Article  Google Scholar 

Download references

Acknowledgements

This paper was sponsored by National Natural Science Foundation of China (51761032), Natural Science Foundation of Inner Mongolia, China (No. 2019BS05005), and Inner Mongolia University of Science and Technology Innovation Fund-(2019QDL-B11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-huan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yh., Li, C., Yuan, Zm. et al. Research progress of TiFe-based hydrogen storage alloys. J. Iron Steel Res. Int. 29, 537–551 (2022). https://doi.org/10.1007/s42243-022-00756-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00756-w

Keywords

Navigation