Skip to main content
Log in

Effects of different alloying elements M (M = Fe, Ni, Mn, Si, Mo, Cu, Y) on Cr2O3 with Cl: a first-principles study

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Using the first-principles methods, the effects of different alloying elements M (M = Fe, Ni, Mn, Si, Mo, Cu, Y) on Cr2O3 with Cl adsorption are studied. The results show that the layer distance of all doped models has been widened to different degrees with Cl adsorption. When Mo or Y is doped into the passive film, the difference of layer distance is reduced to a certain extent. The interaction between alloying elements and Cl is studied by calculating the adsorption height, bond population and electron density difference. The results show that Mo and Y can inhibit Cl erosion and improve the corrosion resistance of passive film. Furthermore, we investigate the CrMoFe and CrMoY co-doped system with Cl adsorption. The calculations point out that when Mo and Y are doped together in the passive film, the corrosion resistance of the system is more prominent than that of CrMo, CrY and CrMoFe co-doping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.T. Liu, J.K. Wu, Corros. Sci. 49 (2007) 2198–2209.

    Article  Google Scholar 

  2. J. Wang, Y.S. Cui, J.G. Bai, N. Dong, Y. Liu, C.L. Zhang, P.D. Han, J. Electrochem. Soc. 166 (2019) C600-C608.

    Article  Google Scholar 

  3. Y. Zeng, K. Li, R. Hughes, J.L. Luo, Ind. Eng. Chem. Res. 56 (2017) 14141–14154.

    Article  Google Scholar 

  4. Y. Han, H. Wu, W. Zhang, D. Zou, G. Liu, G. Qiao, Mater. Des. 69 (2015) 230–240.

    Article  Google Scholar 

  5. H. Li, B. Zhang, Z. Jiang, S. Zhang, H. Feng, P. Han, N. Dong, W. Zhang, G. Li, G. Fan, Q. Lin, J. Alloy. Compd. 686 (2016) 326–338.

    Article  Google Scholar 

  6. Z. Wang, A. Seyeux, S. Zanna, V. Maurice, P. Marcus, Electrochim. Acta 329 (2020) 135159.

    Article  Google Scholar 

  7. V. Maurice, H. Peng, L.H. Klein, A. Seyeux, S. Zanna, P. Marcus, Faraday Discuss. 180 (2015) 151–170.

    Article  Google Scholar 

  8. E.A. El Meguid, A.A. Abd El Latif, Corros. Sci. 49 (2007) 263–275.

    Article  Google Scholar 

  9. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan, H. Feng, H. Zhu, Mater. Charact. 152 (2019) 141–150.

    Article  Google Scholar 

  10. Z. Jiang, H. Feng, H. Li, H. Zhu, S. Zhang, B. Zhang, Y. Han, T. Zhang, D. Xu, Materials 10 (2017) 861.

    Article  Google Scholar 

  11. M.W. Tan, E. Akiyama, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 37 (1995) 1289–1301.

    Article  Google Scholar 

  12. M. Bojinov, G. Fabricius, T. Laitinen, K. Mäkelä, T. Saario, G. Sundholm, Electrochim. Acta 46 (2001) 1339–1358.

    Article  Google Scholar 

  13. L. Wegrelius, F. Falkenberg, I. Olefjord, J. Electrochem. Soc. 146 (1999) 1397–1406.

    Article  Google Scholar 

  14. A. Pardo, M. Merino, A. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50 (2008) 780–794.

    Article  Google Scholar 

  15. A. Pardo, M. Merino, A. Coy, F. Viejo, R. Arrabal, E. Matykina, Corros. Sci. 50 (2008) 1796–1806.

    Article  Google Scholar 

  16. G.O. Ilevbare, G.T. Burstein, Corros. Sci. 43 (2001) 485–513.

    Article  Google Scholar 

  17. H.B. Gunay, P. Ghods, O.B. Isgor, G.J. Carpenter, X. Wu, Appl. Surf. Sci. 274 (2013) 195–202.

    Article  Google Scholar 

  18. O.V. Kasparova, Protect. Met. 40 (2004) 425–431.

    Article  Google Scholar 

  19. R. Robin, F. Miserque, V. Spagnol, J. Nucl. Mater. 375 (2008) 65–71.

    Article  Google Scholar 

  20. S.A. Távara, M.D. Chapetti, J.L. Otegui, C. Manfredi, Int. J. Fatigue 23 (2001) 619–626.

    Article  Google Scholar 

  21. J. Potgieter, P. Olubambi, L. Cornish, C. Machio, E.S.M. Sherif, Corros. Sci. 50 (2008) 2572–2579.

    Article  Google Scholar 

  22. F. Rosalbino, R. Carlini, F. Soggia, G. Zanicchi, G. Scavino, Corros. Sci. 58 (2012) 139–144.

    Article  Google Scholar 

  23. X. Wang, Y. Gao, Y. Li, T. Yang, Corros. Sci. 87 (2014) 211–217.

    Article  Google Scholar 

  24. M. Gao, S. Zhang, B. Yang, J. Wang, Appl. Surf. Sci. 457 (2018) 536–547.

    Article  Google Scholar 

  25. H. Feng, Z. Jiang, H. Li, P. Lu, S. Zhang, H. Zhu, B. Zhang, T. Zhang, D. Xu, Z. Chen, Corros. Sci. 144 (2018) 288–300.

    Article  Google Scholar 

  26. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, Z.G. Chen, Corros. Sci. 158 (2019) 108081.

    Article  Google Scholar 

  27. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys. 86 (2014) 253.

    Article  Google Scholar 

  28. C.H. Zhang, M. Liu, Y. Jin, D.B. Sun, Appl. Surf. Sci. 347 (2015) 386–391.

    Article  Google Scholar 

  29. W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.

    Article  Google Scholar 

  30. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Conden. Matter 14 (2002) 2717.

    Article  Google Scholar 

  31. J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244.

    Article  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.

    Article  Google Scholar 

  33. L.W. Finger, R.M. Hazen, J. Appl. Phys. 51 (1980) 5362–5367.

    Article  Google Scholar 

  34. F. Maldonado, A. Stashans, Surf. Sci. 647 (2016) 78–83.

    Article  Google Scholar 

  35. F. Rohr, M. Bäumer, H.J. Freund, J. Mejias, V. Staemmler, S. Müller, L. Hammer, K. Heinz, Surf. Sci. 372 (1997) L291-L297.

    Article  Google Scholar 

  36. K. Wolter, D. Scarano, J. Fritsch, H. Kuhlenbeck, A. Zecchina, H.J. Freund, Chem. Phys. Lett. 320 (2000) 206–211.

    Article  Google Scholar 

  37. V. Maurice, S. Cadot, P. Marcus, Surf. Sci. 458 (2000) 195–215.

    Article  Google Scholar 

  38. N. Dong, C. hang, H. Li, B. Zhang, P. Han, Sci. Rep. 7 (2017) 871.

  39. P. Błoński, A. Kiejna, J. Hafner, Surf. Sci. 590 (2005) 88–100.

    Article  Google Scholar 

  40. K.N. Nigussa, K.L. Nielsen, Ø. Borck, J.A. Støvneng, Surf. Sci. 653 (2016) 211–221.

    Article  Google Scholar 

  41. Y. Wang, J. Liu, J. European Ceram. Soc. 29 (2009) 2163–2167.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. U1860204 and 51871159), the Natural Science Foundation of Shanxi Province (Grant No. 201801D221125) and Shanxi Engineering Technology Research Center for Energy Materials & Analysis and Testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-de Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Yn., Dong, N., Liu, S. et al. Effects of different alloying elements M (M = Fe, Ni, Mn, Si, Mo, Cu, Y) on Cr2O3 with Cl: a first-principles study. J. Iron Steel Res. Int. 28, 613–620 (2021). https://doi.org/10.1007/s42243-020-00494-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00494-x

Keywords

Navigation