Skip to main content

Advertisement

Log in

Microstructure–mechanical property relationship in Ti–Mo microalloyed steel with random and interphase precipitates

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The relationship between microstructure and mechanical properties of Ti–Mo microalloyed steels composed of ferrite and bainite with nanometer-sized carbides and isothermally transformed at different temperatures and time was systematically investigated by tensile test, hardness test, and transmission electron microscopy. Ferrite formed at high temperatures exhibited both planar/curved sheet-like dispersions of interphase precipitates and random dispersion precipitates, with the interphase precipitates being the dominant morphology. In contrast, bainite formed at low temperatures exhibited only random dispersion precipitates. Furthermore, random dispersion precipitates and interphase precipitates were observed within the same ferrite grains. The mechanical properties of the ferrite specimen were superior to those of the bainite specimen. The stress–strain curves of both specimens indicated continuous yielding, high strength, and sufficient tensile elongation. The strengthening of the ferrite specimen was attributed to grain size strengthening, dislocation strengthening, and precipitation hardening, and the degree of precipitation strengthening was approximately 300 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Charleux, W.J. Poole, M. Militzer, A. Deschamps, Metall. Mater. Trans. A 32 (2001) 1635–1647.

    Article  Google Scholar 

  2. T. Gladman, Mater. Sci. Technol. 15 (1999) 30–36.

    Article  Google Scholar 

  3. Y. Funakawa, Y. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, ISIJ Int. 44 (2004) 1945–1951.

    Article  Google Scholar 

  4. B.K. Show, R. Veerababu, R. Balamuralikrishnan, G. Malakondaiah, Mater. Sci. Eng. A 527 (2010) 1595–1604.

    Article  Google Scholar 

  5. A.T. Davenport, F.G. Berry, R.W.K. Honeycombe, Met. Sci. J. 2 (1968) 104–106.

    Article  Google Scholar 

  6. R.W.K. Honeycombe, Metall. Trans. A 7 (1976) 915–936.

    Article  Google Scholar 

  7. W.B. Lee, S.G. Hong, C.G. Park, S.H. Park, Metall. Mater. Trans. A 33 (2002) 1689–1698.

    Article  Google Scholar 

  8. S. Shanmugam, R.D.K. Misra, J. Hartmann, S.G. Jansto, Mater. Sci. Eng. A 441 (2006) 215–229.

    Article  Google Scholar 

  9. R. Okamoto, A. Borgenstam, J. Agren, Acta Mater. 58 (2010) 4783–4790.

    Article  Google Scholar 

  10. C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, S.H. Wang, Mater. Sci. Eng. A 499 (2010) 162–166.

    Article  Google Scholar 

  11. H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, Acta Mater. 59 (2011) 6264–6274.

    Article  Google Scholar 

  12. J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Acta Mater. 60 (2012) 208–217.

    Article  Google Scholar 

  13. S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Acta Mater. 61 (2013) 2521–2530.

    Article  Google Scholar 

  14. C.Y. Chen, C.C. Chen, J.R. Yang, Mater. Sci. Eng. A 626 (2015) 74–79.

    Article  Google Scholar 

  15. M.Y. Chen, M. Goune, M. Verdier, Y. Brechet, J.R. Yang, Acta Mater. 64 (2014) 78–92.

    Article  Google Scholar 

  16. Y.J. Zhang, K. Shinbo, T. Ohmura, T. Suzuki, K. Tsuzaki, G. Miyamoto, T. Furuhara, ISIJ Int. 58 (2018) 542–550.

    Article  Google Scholar 

  17. J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Mater. Sci. Eng. A 594 (2014) 389–393.

    Article  Google Scholar 

  18. Y. Xu, W.N. Zhang, M.X. Sun, H.L. Yi, Z.Y. Liu, Mater. Lett. 139 (2015) 177–181.

    Article  Google Scholar 

  19. F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 620 (2015) 22–29.

    Article  Google Scholar 

  20. Y.W. Kim, S.G. Hong, Y.H. Huh, C.S. Lee, Mater. Sci. Eng. A 615 (2014) 255–261.

    Article  Google Scholar 

  21. N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, T. Furuhara, ISIJ Int. 54 (2014) 212–221.

    Article  Google Scholar 

  22. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Acta Mater. 83 (2015) 383–396.

    Article  Google Scholar 

  23. H.L. Yi, L.Z. Long, Z.Y. Liu, G.D. Wang, Trans. Mater. Heat Treat. 36 (2015) 56–61.

    Google Scholar 

  24. H.W. Yen, C.Y. Huang, J.R. Yang, Scripta Mater. 61 (2009) 616–619.

    Article  Google Scholar 

  25. T. Sakuma, R.W.K. Honeycombe, Met. Sci. 18 (1984) 449–454.

    Article  Google Scholar 

  26. Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Scripta Mater. 69 (2013) 17–20.

    Article  Google Scholar 

  27. H.L. Yi, L.Z. Long, Z.Y. Liu, G.D. Wang, Steel Res. Int. 85 (2014) 1446–1452.

    Article  Google Scholar 

  28. H.L. Yi, Y. Xu, M.X. Sun, Z.Y. Liu, G.D. Wang, J. Iron Steel Res. Int. 21 (2014) 433–438.

    Article  Google Scholar 

  29. C.Y. Chen, S.F. Chen, C.C. Chen, J.R. Yang, Mater. Sci. Eng. A 634 (2015) 123–133.

    Article  Google Scholar 

  30. R.K. Ham, Philos. Mag. 69 (1961) 1183–1184.

    Article  Google Scholar 

  31. F.B. Pickering, Physical metallurgy and the design of steels, Applied Science Publishers, London, UK, 1978.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support by National Natural Science Foundation of China (51674079) and China Postdoctoral Science Foundation (2016M600211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-long Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Hl., Zhang, Lr., Duan, Rh. et al. Microstructure–mechanical property relationship in Ti–Mo microalloyed steel with random and interphase precipitates. J. Iron Steel Res. Int. 26, 838–845 (2019). https://doi.org/10.1007/s42243-019-00277-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00277-z

Keywords

Navigation