Skip to main content
Log in

Synthesis methods of functionalized nanoparticles: a review

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

With the recent advancement in nanotechnology, nanoparticles (NPs) offer an ample variety of smart functions than conventional materials in various aspects. As compared to larger particles, NPs possess unique characteristics and excellent abilities, such as low toxicity, chemical stability, surface functionality, and biocompatibility. These advantageous properties allow them to be widely utilized in many applications, including biomedical applications, energy applications, IT applications, and industrial applications. In order to fulfill the increasing demands of NP applications, existing NP synthesis methods need to be improved based on the requirements of different applications to further their usage. A comprehensive understanding of the relationships between synthesis parameters and properties of NPs can help us better fine-tune them with designed properties and minimal toxicity. This review paper will discuss the commonly used synthesis methods of functionalized NPs, as well as future directions and challenges to develop various synthesis methods further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sobczak-Kupiec A, Malina D, Kijkowska R, Florkiewicz W, Pluta K, Wzorek Z (2019) Hydroxyapatite/silver nanoparticles powders as antimicrobial agent for bone replacements. Croat Chem Acta 92(1):59–68. https://doi.org/10.5562/cca3463

    Article  Google Scholar 

  2. Natsuki J (2015) A review of silver nanoparticles: synthesis methods, properties and applications. Int J Mater Sci Appl 4(5):325. https://doi.org/10.11648/j.ijmsa.20150405.17

    Article  Google Scholar 

  3. Jeong HH, Choi E, Ellis E, Lee TC (2019) Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality. J Mater Chem B 7(22):3480–3496. https://doi.org/10.1039/c9tb00557a

    Article  Google Scholar 

  4. Lalande C, Miraux S, Derkaoui SM et al (2011) Magnetic resonance imaging tracking of human adipose derived stromal cells within three-dimensional scaffolds for bone tissue engineering. Eur Cells Mater 21:341–354. https://doi.org/10.22203/eCM.v021a25

    Article  Google Scholar 

  5. Ebrahimi M, Botelho M, Lu W, Monmaturapoj N (2019) Synthesis and characterization of biomimetic bioceramic nanoparticles with optimized physicochemical properties for bone tissue engineering. J Biomed Mater Res, Part A 107(8):1654–1666. https://doi.org/10.1002/jbm.a.36681

    Article  Google Scholar 

  6. Kong CH, Steffi C, Shi Z, Wang W (2018) Development of mesoporous bioactive glass nanoparticles and its use in bone tissue engineering. J Biomed Mater Res Part B Appl Biomater 106(8):2878–2887. https://doi.org/10.1002/jbm.b.34143

    Article  Google Scholar 

  7. Thamake SI, Raut SL, Gryczynski Z, Ranjan AP, Vishwanatha JK (2012) Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 33(29):7164–7173. https://doi.org/10.1016/j.biomaterials.2012.06.026

    Article  Google Scholar 

  8. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127(6):1612–1626. https://doi.org/10.1111/jam.14290

    Article  Google Scholar 

  9. Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9(8):7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012

    Article  Google Scholar 

  10. Cai Y, Liu Y, Yan W et al (2007) Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem 17(36):3780–3787. https://doi.org/10.1039/b705129h

    Article  Google Scholar 

  11. Wang Q, Yan J, Yang J, Li B (2016) Nanomaterials promise better bone repair. Mater Today 19(8):451–463. https://doi.org/10.1016/j.mattod.2015.12.003

    Article  Google Scholar 

  12. Souza W, Piperni SG, Laviola P et al (2019) The two faces of titanium dioxide nanoparticles bio-camouflage in 3D bone spheroids. Sci Rep 9(9309). https://doi.org/10.1038/s41598-019-45797-6

  13. Wang N, Maskomani S, Meenashisundaram GK, Fuh JYH, Dheen ST, Anantharajan SK (2020) A study of Titanium and Magnesium particle-induced oxidative stress and toxicity to human osteoblasts. Mater Sci Eng, C 117:111285. https://doi.org/10.1016/j.msec.2020.111285

    Article  Google Scholar 

  14. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278. https://doi.org/10.3109/17435390.2013.773464

    Article  Google Scholar 

  15. Ai J, Biazar E, Jafarpour M et al (2011) Nanotoxicology and nanoparticle safety in biomedical designs. Int J Nanomed. 6:1117–1127. https://doi.org/10.2147/IJN.S16603

    Article  Google Scholar 

  16. Boris Kharisov I, Kharissova OV, Rasika Dias HV, Bai JA, Rai RV (2014) Nanomaterials for environmental protection, First Edition. Edited EnvironmEntal risk, Human HEaltH, and toxic EffEcts of nanoparticlEs

  17. Eisa WH, Abdelgawad AM, Rojas OJ (2018) Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain Chem Eng 6(3):3974–3983. https://doi.org/10.1021/acssuschemeng.7b04333

    Article  Google Scholar 

  18. Hussein J, Attia FM, Bana ME et al (2019) Solid state synthesis of docosahexaenoic acid-loaded zinc oxide nanoparticles as a potential antidiabetic agent in rats. Int J Biol Macromol 140:1305–1314. https://doi.org/10.1016/j.ijbiomac.2019.08.201

    Article  Google Scholar 

  19. Harris VG, Šepelák V (2018) Mechanochemically processed zinc ferrite nanoparticles: evolution of structure and impact of induced cation inversion. J Magnetism Magnetic Mater 465:603–610. https://doi.org/10.1016/j.jmmm.2018.05.100

    Article  Google Scholar 

  20. Hattori Y, Mori H, Chou J, Otsuka M (2016) Mechanochemical synthesis of zinc-apatitic calcium phosphate and the controlled zinc release for bone tissue engineering. Drug Dev Ind Pharm 42(4):595–601. https://doi.org/10.3109/03639045.2015.1061537

    Article  Google Scholar 

  21. Ferro AC, Guedes M (2019) Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors. Mater Sci Eng, C 97:124–140. https://doi.org/10.1016/j.msec.2018.11.083

    Article  Google Scholar 

  22. Wen Y, Xia D (2018) Particle size prediction of magnesium nanoparticle produced by inert gas condensation method. J Nanopart Res 20(4). https://doi.org/10.1007/s11051-017-4102-5

    Article  Google Scholar 

  23. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. In: Synthesis of inorganic nanomaterials, Elsevier, pp 121–139

  24. Meenashisundaram GK, Wang N, Maskomani S et al (2020) Fabrication of Ti + Mg composites by three-dimensional printing of porous Ti and subsequent pressureless infiltration of biodegradable Mg. Mater Sci Eng, C 108:110478. https://doi.org/10.1016/j.msec.2019.110478

    Article  Google Scholar 

  25. Okada M, Matsumoto T (2015) Synthesis and modification of apatite nanoparticles for use in dental and medical applications. Jpn Dental Sci Rev 51(4):85–95. https://doi.org/10.1016/j.jdsr.2015.03.004

    Article  Google Scholar 

  26. Abdelgawad AM, El-Naggar ME, Eisa WH, Rojas OJ (2017) Clean and high-throughput production of silver nanoparticles mediated by soy protein via solid state synthesis. J Clean Prod 144:501–510. https://doi.org/10.1016/j.jclepro.2016.12.122

    Article  Google Scholar 

  27. Hassan MN, Mahmoud MM, El-Fattah AA, Kandil S (2016) Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes. Ceram Int 42(3):3725–3744. https://doi.org/10.1016/j.ceramint.2015.11.044

    Article  Google Scholar 

  28. Espitia PJP, de Soares NFF, dos Coimbra JSR, de Andrade NJ, Cruz FS, Medeiros EA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5(5):1447–1464. https://doi.org/10.1007/s11947-012-0797-6

    Article  Google Scholar 

  29. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44(16):5793–5805. https://doi.org/10.1039/c4cs00362d

    Article  Google Scholar 

  30. Ravichandran K, Praseetha PK, Arun T, Gobalakrishnan S (2018) Synthesis of nanocomposites. In: Synthesis of inorganic nanomaterials, Elsevier, pp 141–168

  31. Basirun WJ, Nasiri-Tabrizi B, Baradaran S (2018) Overview of hydroxyapatite–graphene nanoplatelets composite as bone graft substitute: mechanical behavior and in vitro biofunctionality. In: Critical reviews in solid state and materials sciences, vol 43, no 3. Taylor and Francis Inc., pp. 177–212. https://doi.org/10.1080/10408436.2017.1333951

  32. Kim H, Mondal S, Bharathiraja S, Manivasagan P, Moorthy MS, Oh J (2018) Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceram Int 44(6):6062–6071. https://doi.org/10.1016/j.ceramint.2017.12.235

    Article  Google Scholar 

  33. Nagyné-Kovács T, Studnicka L, Kincses A et al (2018) Synthesis and characterization of Sr and Mg-doped hydroxyapatite by a simple precipitation method. Ceram Int 44(18):22976–22982. https://doi.org/10.1016/j.ceramint.2018.09.096

    Article  Google Scholar 

  34. Frasnelli M, Cristofaro F, Sglavo MV et al (2017) Synthesis and characterization of strontium-substituted hydroxyapatite nanoparticles for bone regeneration. Mater Sci Eng, C 71:653–662. https://doi.org/10.1016/j.msec.2016.10.047

    Article  Google Scholar 

  35. Bogusz K, Zuchora M, Sencadas V et al (2019) Synthesis of methotrexate-loaded tantalum pentoxide–poly(acrylic acid) nanoparticles for controlled drug release applications. J Colloid Interface Sci 538:286–296. https://doi.org/10.1016/j.jcis.2018.11.097

    Article  Google Scholar 

  36. Mahalingam M, Krishnamoorthy K (2015) Selection of a suitable method for the preparation of polymeric nanoparticles: multi-criteria decision making approach. Adv Pharm Bull 5(1):57–67. https://doi.org/10.5681/apb.2015.008

    Article  Google Scholar 

  37. Lim K, Hamid ZAA (2018) Polymer nanoparticle carriers in drug delivery systems: Research trend. In: Applications of nanocomposite materials in drug delivery, Elsevier, pp 217–237

  38. Wang CZ, Fu YC, Jian SC et al (2014) Synthesis and characterization of cationic polymeric nanoparticles as simvastatin carriers for enhancing the osteogenesis of bone marrow mesenchymal stem cells. J Colloid Interface Sci 432:190–199. https://doi.org/10.1016/j.jcis.2014.06.037

    Article  Google Scholar 

  39. Wang YH, Fu YC, Chiu HC et al (2013) Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection. J Nanoparticle Res 15(2077). https://doi.org/10.1007/s11051-013-2077-4

  40. Chen J, Wang Y, Chen X et al (2011) A simple sol-gel technique for synthesis of nanostructured hydroxyapatite, tricalcium phosphate and biphasic powders. Mater Lett 65(12):1923–1926. https://doi.org/10.1016/j.matlet.2011.03.076

    Article  Google Scholar 

  41. Fan JP, Kalia P, Di Silvio L, Huang J (2014) In vitro response of human osteoblasts to multi-step sol-gel derived bioactive glass nanoparticles for bone tissue engineering. Mater Sci Eng, C 36(1):206–214. https://doi.org/10.1016/j.msec.2013.12.009

    Article  Google Scholar 

  42. Chen QZ, Li Y, Jin LY, Quinn JMW, Komesaroff PA (2010) A new sol-gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater 6(10):4143–4153. https://doi.org/10.1016/j.actbio.2010.04.022

    Article  Google Scholar 

  43. Esposito S (2019) Traditional’ sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials. 12(668). https://doi.org/10.3390/ma12040668

  44. Roseti L et al (2017) Scaffolds for Bone Tissue Engineering: state of the art and new perspectives. Mater Sci Eng, C 78:1246–1262. https://doi.org/10.1016/j.msec.2017.05.017

    Article  Google Scholar 

  45. Lin K, Wu C, Chang J (2014) Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater 10(10):4071–4102. https://doi.org/10.1016/j.actbio.2014.06.017

    Article  Google Scholar 

  46. Thavornyutikarn B, Chantarapanich N, Sitthiseripratip K, Thouas GA, Chen Q (2014) Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 3(2–4):61–102. https://doi.org/10.1007/s40204-014-0026-7

    Article  Google Scholar 

  47. Faure J, Drevet R, Lemelle A et al (2015) A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater Sci Eng, C 47:407–412. https://doi.org/10.1016/j.msec.2014.11.045

    Article  Google Scholar 

  48. Dubey RS, Rajesh YBRD, More MA (2015) Synthesis and characterization of SiO2 nanoparticles via sol-gel method for industrial applications. Mater Today Proceed 2(4–5):3575–3579. https://doi.org/10.1016/j.matpr.2015.07.098

    Article  Google Scholar 

  49. Qi H, Yan B, Lu W (2014) A facile synthetic pathway of monodisperse Fe3O4 nanocrystals. J Sol-Gel Sci Technol 69(1):67–71. https://doi.org/10.1007/s10971-013-3187-2

    Article  Google Scholar 

  50. Wang L, Li D, Hao Y et al (2017) Gold nanorod-based poly(Lactic-co-glycolic acid) with manganese dioxide core-shell structured multifunctional nanoplatform for cancer theranostic applications. Int J Nanomed 12:3059–3075. https://doi.org/10.2147/IJN.S128844

    Article  Google Scholar 

  51. Akal Z, Alpsoy L, Baykal A (2016) Biomedical applications of SPION@APTES@PEG-folic acid@carboxylated quercetin nanodrug on various cancer cells. Appl Surf Sci 378:572–581. https://doi.org/10.1016/j.apsusc.2016.03.217

    Article  Google Scholar 

  52. Lin BL, Zhang JZ, Lu LJ et al. (2017) Superparamagnetic iron oxide nanoparticles- complexed cationic amylose for in vivo magnetic resonance imaging tracking of transplanted stem cells in stroke. Nanomaterials 7(107). https://doi.org/10.3390/nano7050107

  53. Wang XD, Shen ZX, Sang T et al (2010) Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J Colloid Interface Sci 341(1):23–29. https://doi.org/10.1016/j.jcis.2009.09.018

    Article  Google Scholar 

  54. Roopavath UK, Soni R, Mahanta U, Deshpande AS, Rath SN (2019) 3D printable SiO 2 nanoparticle ink for patient specific bone regeneration. RSC Adv 9(41):23832–23842. https://doi.org/10.1039/c9ra03641e

    Article  Google Scholar 

  55. Naruphontjirakul P, Tsigkou O, Li S, Porter AE, Jones JR (2019) Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. Acta Biomater 90:373–392. https://doi.org/10.1016/j.actbio.2019.03.038

    Article  Google Scholar 

  56. Geng Z, Cui Z, Li Z et al (2016) Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating. Mater Sci Eng, C 58:467–477. https://doi.org/10.1016/j.msec.2015.08.061

    Article  Google Scholar 

  57. Geng Z, Wang R, Zhuo X et al (2017) Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater Sci Eng, C 71:852–861. https://doi.org/10.1016/j.msec.2016.10.079

    Article  Google Scholar 

  58. Tamayo L, Palza H, Bejarano J, Zapata PA (2019) Polymer composites with metal nanoparticles: synthesis, properties, and applications. In: Polymer composites with functionalized nanoparticles, Elsevier, pp 249–286

  59. Erol-Taygun M, Zheng K, Boccaccini AR (2013) Nanoscale bioactive glasses in medical applications. Int J Appl Glas Sci 4(2):136–148. https://doi.org/10.1111/ijag.12029

    Article  Google Scholar 

  60. Snehalatha M, Venugopal K, Saha RN (2008) Etoposide-loaded PLGA and PCL nanoparticles I: preparation and effect of formulation variables. Drug Deliv 15(5):267–275. https://doi.org/10.1080/10717540802174662

    Article  Google Scholar 

  61. Sun Y, Guo G, Tao D, Wang Z (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68(3):373–377. https://doi.org/10.1016/j.jpcs.2006.11.026

    Article  Google Scholar 

  62. Ma X, Chen Y, Qian J, Yuan Y, Liu C (2016) Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method. Mater Chem Phys 183:220–229. https://doi.org/10.1016/j.matchemphys.2016.08.021

    Article  Google Scholar 

  63. Kombaiah K, Vijaya JJ, Kennedy LJ, Kaviyarasu K (2019) Catalytic studies of NiFe2O4 nanoparticles prepared by conventional and microwave combustion method. Mater Chem Phys 221:11–28. https://doi.org/10.1016/j.matchemphys.2018.09.012

    Article  Google Scholar 

  64. Naik MM, Naik HSB, Nagaraju G, Vinuth M, Vinu K, Rashmi SK (2018) Effect of aluminium doping on structural, optical, photocatalytic and antibacterial activity on nickel ferrite nanoparticles by sol–gel auto-combustion method. J Mater Sci: Mater Electron 29(23):20395–20414. https://doi.org/10.1007/s10854-018-0174-y

    Article  Google Scholar 

  65. Sulaiman NH, Ghazali MJ, Yunas J, Rajabi A, Majlis BY, Razali M (2018) Synthesis and characterization of CaFe2O4 nanoparticles via co-precipitation and auto-combustion methods. Ceram Int 44(1):46–50. https://doi.org/10.1016/j.ceramint.2017.08.203

    Article  Google Scholar 

  66. Hwangbo Y, Lee YI (2019) Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method. J Alloys Compd 771:821–826. https://doi.org/10.1016/j.jallcom.2018.08.308

    Article  Google Scholar 

  67. Bouhadoun S, Guillard C, Dapozze F et al (2015) One step synthesis of N-doped and Au-loaded TiO2 nanoparticles by laser pyrolysis: application in photocatalysis. Appl Catal B Environ 174–175:367–375. https://doi.org/10.1016/j.apcatb.2015.03.022

    Article  Google Scholar 

  68. Pan Q, Zuo P, Lou S et al (2017) Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. J Alloys Compd 723:434–440. https://doi.org/10.1016/j.jallcom.2017.06.217

    Article  Google Scholar 

  69. Yildirim S, Yurddaskal M, Dikici T, Aritman I, Ertekin K, Celik E (2016) Structural and luminescence properties of undoped, Nd3+ and Er3+ doped TiO2 nanoparticles synthesized by flame spray pyrolysis method. Ceram Int 42(9):10579–10586. https://doi.org/10.1016/j.ceramint.2016.03.131

    Article  Google Scholar 

  70. Gholampour N, Chaemchuen S, Hu ZY, Mousavi B, Van Tendeloo G, Verpoort F (2017) Simultaneous creation of metal nanoparticles in metal organic frameworks via spray drying technique. Chem Eng J 322:702–709. https://doi.org/10.1016/j.cej.2017.04.085

    Article  Google Scholar 

  71. Ghosh SK, Roy SK, Kundu B, Datta S, Basu D (2011) Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater Sci Eng B Solid-State Mater Adv Technol 176(1):14–21. https://doi.org/10.1016/j.mseb.2010.08.006

    Article  Google Scholar 

  72. Solero G (2017) Synthesis of nanoparticles through flame spray pyrolysis: experimental apparatus and preliminary results. 7(1): 21–25. https://doi.org/10.5923/j.nn.20170701.05

  73. Strobel LA, Hild N, Mohn D et al (2013) Novel strontium-doped bioactive glass nanoparticles enhance proliferation and osteogenic differentiation of human bone marrow stromal cells. J Nanoparticle Res. https://doi.org/10.1007/s11051-013-1780-5

    Article  Google Scholar 

  74. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220. https://doi.org/10.1016/j.micpath.2018.01.027

    Article  Google Scholar 

  75. Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226. https://doi.org/10.1016/j.micpath.2018.01.038

    Article  Google Scholar 

  76. Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by streptomyces bikiniensis strain Ess_amA-1. Int J Nanomed 10:3389–3401. https://doi.org/10.2147/IJN.S82707

    Article  Google Scholar 

  77. Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation

  78. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18):3984–3987. https://doi.org/10.1016/j.matlet.2007.01.018

    Article  Google Scholar 

  79. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus trichoderma reesei (a route for large-scale production of AgNPs). Insciences J. https://doi.org/10.5640/insc.010165

    Article  Google Scholar 

  80. Molnár Z, Bódai V, Szakacs G et al (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8(3943). https://doi.org/10.1038/s41598-018-22112-3

  81. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5(1):112–119. https://doi.org/10.1016/j.btre.2014.12.001

    Article  Google Scholar 

  82. IBM I, BEE AE, WF S, WA F (2016) Green biosynthesis of silver nanoparticles using marine red algae acanthophora specifera and its antibacterial activity. J Nanomed Nanotechnol 7(6). https://doi.org/10.4172/2157-7439.1000409

  83. Eugenio M, Müller N, Frasés S et al (2016) Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv 6(12):9893–9904. https://doi.org/10.1039/c5ra22727e

    Article  Google Scholar 

  84. Moghaddam AB, Moniri M, Azizi S et al (2017) Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules. https://doi.org/10.3390/molecules22060872

    Article  Google Scholar 

  85. Patil S, Singh N (2019) Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation. Colloids Surfaces B Biointerfaces 176:150–155. https://doi.org/10.1016/j.colsurfb.2018.12.067

    Article  Google Scholar 

  86. Patil MP, Singh RD, Koli PB et al (2018) Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathog 121:184–189. https://doi.org/10.1016/j.micpath.2018.05.040

    Article  Google Scholar 

  87. Ansari MA, Khan HM, Alzohairy MA et al (2015) Green synthesis of Al2O3 nanoparticles and their bactericidal potential against clinical isolates of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 31(1):153–164. https://doi.org/10.1007/s11274-014-1757-2

    Article  Google Scholar 

  88. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  Google Scholar 

  89. Mani MP, Jaganathan SK, Md Khudzari AZ, Ismail AF (2019) Green synthesis of nickel oxide particles and its integration into polyurethane scaffold matrix ornamented with groundnut oil for bone tissue engineering. Int J Polym Anal Charact 24(7):571–583. https://doi.org/10.1080/1023666x.2019.1630930

    Article  Google Scholar 

  90. Khatami M, Sharifi I, Nobre MAL, Zafarnia N, Aflatoonian MR (2018) Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chem Lett Rev 11(2):125–134. https://doi.org/10.1080/17518253.2018.1444797

    Article  Google Scholar 

  91. Doan VD, Luc VS, Nguyen TLH, Nguyen TD, Nguyen TD (2020) Utilizing waste corn-cob in biosynthesis of noble metallic nanoparticles for antibacterial effect and catalytic degradation of contaminants. Environ Sci Pollut Res 27(6):6148–6162. https://doi.org/10.1007/s11356-019-07320-2

    Article  Google Scholar 

  92. Aguilar NM, Arteaga-Cardona F, Estévez JO, Silva-González NR, Benítez-Serrano JC, Salazar-Kuri U (2018) Controlled biosynthesis of silver nanoparticles using sugar industry waste, and its antimicrobial activity. J Environ Chem Eng 6(5):6275–6281. https://doi.org/10.1016/j.jece.2018.09.056

    Article  Google Scholar 

  93. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnol 34(7):588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  Google Scholar 

  94. Singh M, Sinha I, Mandal RK (2009) Role of pH in the green synthesis of silver nanoparticles. Mater Lett 63(3–4):425–427. https://doi.org/10.1016/j.matlet.2008.10.067

    Article  Google Scholar 

  95. Zhao X, Zhou L, Rajoka MSR et al (2018) Fungal silver nanoparticles: synthesis, application and challenges. Crit Rev Biotechnol 38(6):817–835. https://doi.org/10.1080/07388551.2017.1414141

    Article  Google Scholar 

  96. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262. https://doi.org/10.1016/j.nano.2009.07.002

    Article  Google Scholar 

  97. Siddiqi KS, Husen A (2016) Fabrication of metal and metal oxide nanoparticles by algae and their toxic effects. Nanoscale Res Lett. https://doi.org/10.1186/s11671-016-1580-9

    Article  Google Scholar 

  98. Uma Suganya KS, Govindaraju K, Kumar VG et al (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng, C 47:351–356. https://doi.org/10.1016/j.msec.2014.11.043

    Article  Google Scholar 

  99. Mahdavi M, Namvar F, Bin Ahmad M, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964. https://doi.org/10.3390/molecules18055954

    Article  Google Scholar 

  100. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277. https://doi.org/10.1016/j.matlet.2013.11.038

    Article  Google Scholar 

  101. Abboud Y, Saffaj T, Chagraoui A et al (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4(5):571–576. https://doi.org/10.1007/s13204-013-0233-x

    Article  Google Scholar 

  102. Skalickova S, Baron M, Sochor J (2017) Nanoparticles Biosynthesized by Yeast: a Review of their application. Kvas Prum 63(6):290–292. https://doi.org/10.18832/kp201727

    Article  Google Scholar 

  103. Nabila MI, Kannabiran K (2018) Biosynthesis, characterization and antibacterial activity of copper oxide nanoparticles (CuO NPs) from actinomycetes. Biocatal Agric Biotechnol 15:56–62. https://doi.org/10.1016/j.bcab.2018.05.011

    Article  Google Scholar 

  104. Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mate 14(6):415–418. https://doi.org/10.1002/1521-4095(20020318)14:6%3C415::AID-ADMA415%3E3.0.CO;2-W

    Article  Google Scholar 

  105. Nam KT, Kim DW, Yoo PJ et al (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312(5775):885–888. https://doi.org/10.1126/science.1122716

  106. Matussin S, Harunsani MH, Tan AL, Khan MM (2020) Plant-extract-mediated SnO2 nanoparticles: synthesis and applications. ACS Sustain Chem Eng 8(8):3040–3054. https://doi.org/10.1021/acssuschemeng.9b06398

    Article  Google Scholar 

  107. Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016) The development of a green approach for the biosynthesis of silver and gold nanoparticles by using Panax ginseng root extract, and their biological applications. Artif Cells Nanomed Biotechnol 44(4):1150–1157. https://doi.org/10.3109/21691401.2015.1011809

    Article  Google Scholar 

  108. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10(10):5221–5238. https://doi.org/10.3390/ijerph10105221

    Article  Google Scholar 

  109. Singh P, Kim YJ, Yang DC (2016) A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif Cells Nanomed Biotechnol 44(8):1949–1957. https://doi.org/10.3109/21691401.2015.1115410

    Article  Google Scholar 

  110. Arokiyaraj S, Arasu MV, Vincent S et al (2014) Rapid green synthesis of silver nanoparticles from chrysanthemum indicum land its antibacterial and cytotoxic effects: an in vitro study. Int J Nanomed 9(1):379–388. https://doi.org/10.2147/IJN.S53546

    Article  Google Scholar 

  111. Rajarao R, Ferreira R, Sadi SHF, Khanna R, Sahajwalla V (2014) Synthesis of silicon carbide nanoparticles by using electronic waste as a carbon source. Mater Lett 120:65–68. https://doi.org/10.1016/j.matlet.2014.01.018

    Article  Google Scholar 

  112. Zhang HG, Zhu Q, Xie ZH (2005) Mechanochemical-hydrothermal synthesis and characterization of fluoridated hydroxyapatite. Mater Res Bull 40(8):1326–1334. https://doi.org/10.1016/j.materresbull.2005.04.005

    Article  Google Scholar 

  113. Tian T, Jiang D, Zhang J, Lin Q (2008) Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method. Mater Sci Eng, C 28(1):57–63. https://doi.org/10.1016/j.msec.2007.10.049

    Article  Google Scholar 

  114. Abdel-Aal EA, El-Midany AA, El-Shall H (2008) Mechanochemical-hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Mater Chem Phys 112(1):202–207. https://doi.org/10.1016/j.matchemphys.2008.05.053

    Article  Google Scholar 

  115. Parthiban SP, Kim IY, Kikuta K, Ohtsuki C (2011) Effect of ammonium carbonate on formation of calcium-deficient hydroxyapatite through double-step hydrothermal processing. J Mater Sci Mater Med 22(2):209–216. https://doi.org/10.1007/s10856-010-4201-7

    Article  Google Scholar 

  116. Ashok M, Kalkura SN, Sundaram NM, Arivuoli D (2007) Growth and characterization of hydroxyapatite crystals by hydrothermal method. J Mater Sci Mater Med 18(5):895–898. https://doi.org/10.1007/s10856-006-0070-5

    Article  Google Scholar 

  117. Lin K, Chang J, Cheng R, Ruan M (2007) Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution. Mater Lett 61(8–9):1683–1687. https://doi.org/10.1016/j.matlet.2006.07.099

    Article  Google Scholar 

  118. Bhagwat VR, Humbe AV, More SD, Jadhav KM (2019) Sol-gel auto combustion synthesis and characterizations of cobalt ferrite nanoparticles: different fuels approach. Mater Sci Eng B Solid-State Mater Adv Technol 248. https://doi.org/10.1016/j.mseb.2019.114388

  119. Anjaneyulu U, Sasikumar S (2014) Bioactive nanocrystalline wollastonite synthesized by sol-gel combustion method by using eggshell waste as calcium source. Bull Mater Sci 37(2):207–212. https://doi.org/10.1007/s12034-014-0646-5

    Article  Google Scholar 

  120. Moon DS, Lee JK (2012) Tunable synthesis of hierarchical mesoporous silica nanoparticles with radial wrinkle structure. Langmuir 28(33):12341–12347. https://doi.org/10.1021/la302145j

    Article  Google Scholar 

  121. Li X, Chen X, Miao G et al (2014) Synthesis of radial mesoporous bioactive glass particles to deliver osteoactivin gene. J Mater Chem B 2(40):7045–7054. https://doi.org/10.1039/c4tb00883a

    Article  Google Scholar 

  122. Qi C, Tang QL, Zhu YJ, Zhao XY, Chen F (2012) Microwave-assisted hydrothermal rapid synthesis of hydroxyapatite nanowires using adenosine 5’-triphosphate disodium salt as phosphorus source. Mater Lett 85:71–73. https://doi.org/10.1016/j.matlet.2012.06.106

    Article  Google Scholar 

  123. Han JK, Song HY, Saito F, Lee BT (2006) Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater Chem Phys 99(2–3):235–239. https://doi.org/10.1016/j.matchemphys.2005.10.017

    Article  Google Scholar 

  124. Gayathri T, Arun Kumar R, Dhilipkumaran S, Jayasankar CK, Saravanan P, Devanand B (2019) Microwave-assisted combustion synthesis of silica-coated Eu:Gd2O3 nanoparticles for MRI and optical imaging of cancer cells. J Mater Sci: Mater Electron 30(7):6860–6867. https://doi.org/10.1007/s10854-019-00999-6

    Article  Google Scholar 

  125. Lamkhao S, Phaya M, Jansakun C et al (2019) Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci Rep. https://doi.org/10.1038/s41598-019-40488-8

    Article  Google Scholar 

  126. Suchanek WL, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF (2002) Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature

  127. Deganello F, Tyagi AK (2018) Solution combustion synthesis, energy and environment: best parameters for better materials. Prog Crystal Growth Charact Mater 64(2):23–61. https://doi.org/10.1016/j.pcrysgrow.2018.03.001

    Article  Google Scholar 

  128. Reddy MV, Pathak M (2018) Sol-gel combustion synthesis of Ag doped CaSiO3: in vitro bioactivity, antibacterial activity and cytocompatibility studies for biomedical applications. Mater Technol 33(1):38–47. https://doi.org/10.1080/10667857.2017.1389050

    Article  Google Scholar 

  129. Rajan Babu D, Venkatesan K (2017) Synthesis of nanophasic CoFe2O4 powder by self-igniting solution combustion method using mix up fuels. J Cryst Growth 468:179–184. https://doi.org/10.1016/j.jcrysgro.2016.11.054

    Article  Google Scholar 

  130. Choudhary R, Koppala S, Swamiappan S (2015) Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis. J Asian Ceram Soc 3(2):173–177. https://doi.org/10.1016/j.jascer.2015.01.002

    Article  Google Scholar 

  131. Saranya K, Kowshik M, Roy Ramanan S (2011) Synthesis of hydroxyapatite nanopowders by sol-gel emulsion technique

  132. Guo X, Canet JL, Boyer D, Gautier A, Mahiou R (2012) Sol-gel emulsion synthesis of biphotonic core-shell nanoparticles based on lanthanide doped organic-inorganic hybrid materials. J Mater Chem 22(13):6117–6122. https://doi.org/10.1039/c2jm15470f

    Article  Google Scholar 

  133. Wang Y, Chen X (2017) Facile synthesis of hollow mesoporous bioactive glasses with tunable shell thickness and good monodispersity by micro-emulsion method. Mater Lett 189:325–328. https://doi.org/10.1016/j.matlet.2016.12.004

    Article  Google Scholar 

  134. Hou J, Cao T, Idrees F, Cao C (2016) A co-sol-emulsion-gel synthesis of tunable and uniform hollow carbon nanospheres with interconnected mesoporous shells. Nanoscale 8(1):451–457. https://doi.org/10.1039/c5nr06279a

    Article  Google Scholar 

  135. Teng Z, Li W, Tang Y, Elzatahry A, Lu G, Zhao D (2019) Mesoporous organosilica hollow nanoparticles: synthesis and applications. Adv Mater 31(38). https://doi.org/10.1002/adma.201707612

  136. Safarifard V, Morsali A (2018) Facile preparation of nanocubes zinc-based metal-organic framework by an ultrasound-assisted synthesis method; precursor for the fabrication of zinc oxide octahedral nanostructures. Ultrason Sonochem 40:921–928. https://doi.org/10.1016/j.ultsonch.2017.09.014

    Article  Google Scholar 

  137. Douk AS, Saravani H, Farsadrooh M, Noroozifar M (2019) An environmentally friendly one-pot synthesis method by the ultrasound assistance for the decoration of ultrasmall Pd-Ag NPs on graphene as high active anode catalyst towards ethanol oxidation. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2019.104616

    Article  Google Scholar 

  138. Xu S, Wu Q, Wu J et al (2020) Ultrasound-assisted synthesis of nanocrystallized silicocarnotite biomaterial with improved sinterability and osteogenic activity. J Mater Chem B 8(15):3092–3103. https://doi.org/10.1039/c9tb02855b

    Article  Google Scholar 

  139. Alizadeh S, Fallah N, Nikazar M (2019) An ultrasonic method for the synthesis, control and optimization of CdS/TiO 2 core-shell nanocomposites. RSC Adv 9(8):4314–4324. https://doi.org/10.1039/c8ra10155h

    Article  Google Scholar 

  140. Iqbal N, Kadir MRA, Mahmood NH et al (2014) Characterization, antibacterial and in vitro compatibility of zinc-silver doped hydroxyapatite nanoparticles prepared through microwave synthesis. Ceram Int 40(3):4507–4513. https://doi.org/10.1016/j.ceramint.2013.08.125

    Article  Google Scholar 

  141. Alshemary AZ, Akram M, Goh YF, Abdul Kadir MR, Abdolahi A, Hussain R (2015) Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite. J Alloys Compd 645:478–486. https://doi.org/10.1016/j.jallcom.2015.05.064

    Article  Google Scholar 

  142. Gopi D, Ramya S, Rajeswari D, Karthikeyan P, Kavitha L (2014) Strontium, cerium co-substituted hydroxyapatite nanoparticles: synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies. Colloids Surfaces A Physicochem Eng Asp 451(1):172–180. https://doi.org/10.1016/j.colsurfa.2014.03.035

    Article  Google Scholar 

  143. Kalita SJ, Verma S (2010) Nanocrystalline hydroxyapatite bioceramic using microwave radiation: synthesis and characterization. Mater Sci Eng, C 30(2):295–303. https://doi.org/10.1016/j.msec.2009.11.007

    Article  Google Scholar 

  144. Bogdal D, Prociak A, Michalowski S (2011) Synthesis of polymer nanocomposites under microwave irradiation. Curr Org Chem 15(2):178–188. https://doi.org/10.2174/138527211793979835

    Article  Google Scholar 

  145. Lee BT, Youn MH, Paul RK, Lee KH, Song HY (2007) In situ synthesis of spherical BCP nanopowders by microwave assisted process. Mater Chem Phys 104(2–3):249–253. https://doi.org/10.1016/j.matchemphys.2007.02.009

    Article  Google Scholar 

  146. Demirtaş TT, Kaynak G, Gümüşderelioğlu M (2015) Bone-likehydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation. Mater Sci Eng C 49:713–719. https://doi.org/10.1016/j.msec.2015.01.057

    Article  Google Scholar 

  147. Peng PZ, Qianand T (2019) Microwave-assisted solid-state synthesis of fluorinated hydroxyapatite. In: Characterization of minerals, metals, and materials, pp 225–235

  148. Dharmalingam K, Pamu D, Anandalakshmi R (2018) Comparison of solid state synthesis of zinc calcium phosphorous oxide (ZCAP) ceramics under conventional and microwave heating methods. Mater Lett 212:207–210. https://doi.org/10.1016/j.matlet.2017.10.044

    Article  Google Scholar 

  149. Liang T, Qian J, Yuan Y, Liu C (2013) Synthesis of mesoporous hydroxyapatite nanoparticles using a template-free sonochemistry-assisted microwave method. J Mater Sci 48(15):5334–5341. https://doi.org/10.1007/s10853-013-7328-3

    Article  Google Scholar 

  150. Zou Z, Lin K, Chen L, Chang J (2012) Ultrafast synthesis and characterization of carbonated hydroxyapatite nanopowders via sonochemistry-assisted microwave process. Ultrason Sonochem 19(6):1174–1179. https://doi.org/10.1016/j.ultsonch.2012.04.002

    Article  Google Scholar 

  151. Elbasuney S (2020) Green Synthesis of hydroxyapatite nanoparticles with controlled morphologies and surface properties toward biomedical applications. J Inorg Organomet Polym Mater 30(3):899–906. https://doi.org/10.1007/s10904-019-01247-4

    Article  Google Scholar 

  152. Siddharthan A, Kumar TSS, Seshadri SK (2010) In situ composite coating of titania-hydroxyapatite on commercially pure titanium by microwave processing. Surf Coatings Technol 204(11):1755–1763. https://doi.org/10.1016/j.surfcoat.2009.11.003

    Article  Google Scholar 

  153. Chook SW, Chia CH, Zakaria S et al (2012) Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Res Lett 7:1–7. https://doi.org/10.1186/1556-276X-7-541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NW—Original draft preparation, conceptualization, JYHF—Project administration; Resources; Supervision, STD—Project administration; Resources; Supervision, ASK—Project administration; Resources; Supervision; Writing—reviewing and editing.

Corresponding author

Correspondence to A. Senthil Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Fuh, J.Y.H., Dheen, S.T. et al. Synthesis methods of functionalized nanoparticles: a review. Bio-des. Manuf. 4, 379–404 (2021). https://doi.org/10.1007/s42242-020-00106-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00106-3

Keywords

Navigation