Skip to main content
Log in

Determination of epsilon for Omega vortex identification method

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In the present paper, epsilon (ε) in the Omega vortex identification criterion (Ω method) is defined as an explicit function in order to apply the Ω method to different cases and even different time steps for the unsteady cases. In our method, ε is defined as a function relating with the flow without any subjective adjustment on its coefficient. The newly proposed criteria for the determination of ε is tested in several typical flow cases and is proved to be effective in the current work. The test cases given in the present paper include boundary layer transition, shock wave and boundary layer interaction, and channel flow with different Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou J., Adrian R. J., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  2. Hunt J. C., Wray A. A., Moin P. Eddies, streams, and convergence zones in turbulent flows [R]. Center for Turbulence Research: Proceedings of the Summer Program, 1988, N89–24555.

    Google Scholar 

  3. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  MATH  Google Scholar 

  4. Pierce B., Moin P., Sayadi T. Application of vortex identification schemes to direct numerical simulation data of a transitional boundary layer [J]. Physics of Fluids, 2013, 25 (1): 015102.

    Article  Google Scholar 

  5. Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J]. Renewable and Sustainable Energy Reviews, 2018, 81 (Part 1): 1269–1285.

    Article  Google Scholar 

  6. Liu C., Wang Y., Yang Y. et al. New Omega vortex identification method [J]. Science China Physics, Mechanics and Astronomy, 2016, 59 (8): 1–9.

    Article  Google Scholar 

  7. Tao Y., Inthavong K., Petersen P. et al. Numerical simulation and experimental verification of wake flows induced by moving manikins [J]. 4th International Conference on Building Energy, Environment, Melbourne, Australia, 2018.

    Google Scholar 

  8. Abdel-Raouf E., Sharif M. A., Baker J. Impulsively started, steady and pulsated annular inflows [J]. Fluid Dynamics Research, 2017, 49 (2): 025511.

    Article  MathSciNet  Google Scholar 

  9. Epps B. Review of vortex identification methods [C]. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2017.

    Google Scholar 

  10. Dong X., Tian S., Liu C. Correlation analysis on volume vorticity and vortex in late boundary layer transition [J]. Physics of Fluids, 2018, 30 (1): 014105.

    Article  Google Scholar 

  11. Dong Y., Yang Y., Liu C. DNS study on three vortex identification methods [C]. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2017.

    Google Scholar 

  12. Wang Y., Yang Y., Yang G. et al. DNS study on vortex and vorticity in late boundary layer transition [J]. Communications in Computational Physics, 2017, 22 (2): 441–459.

    Article  MathSciNet  Google Scholar 

  13. Truesdell C. Two measures of vorticity [J]. Journal of Rational Mechanics and Analysis, 1953, 2: 173–217.

    MathSciNet  MATH  Google Scholar 

  14. Lozano-Durán A., Jiménez J. Effect of the computational domain on direct simulations of turbulent channels up to Reτ = 4200, Physics of Fluids, 2014, 26 (1): 011702.

    Article  Google Scholar 

  15. Coleman G. N., Kim J., Moser R. D. A numerical study of turbulent supersonic isothermal-wall channel flow [J]. Journal of Fluid Mechanics, 1995, 305: 159–183.

    Article  MATH  Google Scholar 

  16. Chen X., Li X., Fan J. Direct numerical simulation of hypersonic turbulent channel flow in thermally perfect gas [J]. Science China Physics Mechanics and Astronomy, 2011, 41 (8): 969–979.

    Article  Google Scholar 

  17. Zhang Y., Liu K., Li J. et al. Analysis of the vortices in the inner flow of reversible pump turbine with the new omega vortex identification method [J]. Journal of Hydrodynamics, 2018, 30 (3): 463–469.

    Article  Google Scholar 

  18. Li Y., Zhao S., Tagawa K. et al. Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine [J]. Energy Conversion and Management, 2018, 167: 70–80.

    Article  Google Scholar 

  19. Zhang Y., Zheng X., Li J. et al. Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station [J]. Renewable Energy, 2019, 130: 667–676.

    Article  Google Scholar 

  20. Li D., Wang H., Qin Y. et al. Numerical simulation of hysteresis characteristic in the hump region of a pumpturbine model [J]. Renewable energy, 2018, 115: 433–447.

    Article  Google Scholar 

  21. Zhang Y., Chen F., Zhang Y. et al. Experimental investigations of interactions between a laser-induced cavitation bubble and a spherical particle [J]. Experimental Thermal and Fluid Science, 2018, 98 (November), 645–661.

    Article  Google Scholar 

  22. Cui P., Zhang A. M., Wang S. P. et al. Ice breaking by a collapsing bubble [J]. Journal of Fluid Mechanics, 2018, 841: 287–309.

    Article  Google Scholar 

  23. Zhang Y., Gao Y., Guo Z. et al. Effects of mass transfer on damping mechanisms of vapor bubbles oscillating in liquids [J]. Ultrasonics Sonochemistry, 2018, 40 (Part A): 120–127.

    Article  Google Scholar 

  24. Zhang Y., Zhang Y., Qian Z. et al. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow [J]. Renewable and Sustainable Energy Reviews, 2016, 56: 303–318.

    Article  Google Scholar 

  25. Li X., Jiang Z., Zhu Z. et al. Entropy generation analysis for the cavitating head-drop characteristic of a centrifugal pump [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, DOI: https://doi.org/10.1177/0954406217753458.

    Google Scholar 

  26. Li X., Gao P., Zhu Z. et al. Effect of the blade loading distribution on hydrodynamic performance of a centrifugal pump with cylindrical blades [J]. Journal of Mechanical Science and Technology, 2018, 32 (3): 1161–1170.

    Article  Google Scholar 

  27. Liu Y., Tan L. Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode [J]. Renewable Energy, 2018, 129 (Part A): 606–615.

    Article  Google Scholar 

  28. Zhang Y., Zhang Y. Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation [J]. Ultrasonics Sonochemistry, 2018, 40 (Part B): 151–157.

    Article  Google Scholar 

  29. Zhang Y., Zhang Y., Li S. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation [J]. Ultrasonics Sonochemistry, 2017, 35 (Part A): 431–439.

    Article  Google Scholar 

  30. Zhang Y., Guo Z., Du X. Wave propagation in liquids with oscillating vapor-gas bubbles [J]. Applied Thermal Engineering, 2018, 133 (3): 483–492.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Mathematics at University of Texas at Arlington. The authors are grateful to Texas Advanced Computing Center (TACC) for the computation hours provided. This work is accomplished by using Code DNSUTA released by Prof. Chaoqun Liu at University of Texas at Arlington in 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-ning Zhang  (张宇宁).

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 51506051).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Xr., Wang, Yq., Chen, Xp. et al. Determination of epsilon for Omega vortex identification method. J Hydrodyn 30, 541–548 (2018). https://doi.org/10.1007/s42241-018-0066-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-018-0066-x

Key words

Navigation