Skip to main content
Log in

Wind Driven Butterfly Optimization Algorithm with Hybrid Mechanism Avoiding Natural Enemies for Global Optimization and PID Controller Design

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a Butterfly Optimization Algorithm (BOA) with a wind-driven mechanism for avoiding natural enemies known as WDBOA. To further balance the basic BOA algorithm's exploration and exploitation capabilities, the butterfly actions were divided into downwind and upwind states. The algorithm of exploration ability was improved with the wind, while the algorithm of exploitation ability was improved against the wind. Also, a mechanism of avoiding natural enemies based on Lévy flight was introduced for the purpose of enhancing its global searching ability. Aiming at improving the explorative performance at the initial stages and later stages, the fragrance generation method was modified. To evaluate the effectiveness of the suggested algorithm, a comparative study was done with six classical metaheuristic algorithms and three BOA variant optimization techniques on 18 benchmark functions. Further, the performance of the suggested technique in addressing some complicated problems in various dimensions was evaluated using CEC 2017 and CEC 2020. Finally, the WDBOA algorithm is used proportional-integral-derivative (PID) controller parameter optimization. Experimental results demonstrate that the WDBOA based PID controller has better control performance in comparison with other PID controllers tuned by the Genetic Algorithm (GA), Flower Pollination Algorithm (FPA), Cuckoo Search (CS) and BOA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Yang, X. S., & Deb, S. (2014). Cuckoo search: Recent advances and applications. Neural Computing and Applications, 24, 169–174. https://doi.org/10.1007/s00521-013-1367-1

    Article  Google Scholar 

  2. Hussain, K., Mohd, S., & M. N., Cheng, S., Shi, Y. (2019). Metaheuristic research: A comprehensive survey. Artificial Intelligence Review, 52, 2191–2233. https://doi.org/10.1007/s10462-017-9605-z

    Article  Google Scholar 

  3. Blum, C., Puchinger, J., Raidl, G. R., & Roli, A. (2011). Hybrid metaheuristics in combinatorial optimization: A survey. Applied soft Computing, 11, 4135–4151. https://doi.org/10.1016/j.asoc.2011.02.032

    Article  MATH  Google Scholar 

  4. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization: An overview. Swarm Intelligence, 1, 33–57. https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  5. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1, 28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  6. Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artificial Intelligence Review, 42, 21–57. https://doi.org/10.1007/s10462-012-9328-0

    Article  Google Scholar 

  7. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy flights World congress on nature & biologically inspired computing (NaBIC). Coimbatore, India, 11, 210–214. https://doi.org/10.1109/NABIC.2009.5393690

    Article  Google Scholar 

  8. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  9. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  10. Chakraborty, S., Saha, A. K., Nama, S., & Debnath, S. (2021). COVID-19 X-ray image segmentation by modified whale optimization algorithm with population reduction. Computers in Biology and Medicine., 139, 104984. https://doi.org/10.1016/j.compbiomed.2021.104984

    Article  Google Scholar 

  11. Xing, J., Zhao, H., Chen, H., Deng, R., & Xiao, L. (2023). Boosting whale optimizer with quasi-oppositional learning and Gaussian barebone for feature selection and COVID-19 image segmentation. Journal of Bionic Engineering, 20, 797–818. https://doi.org/10.1007/s42235-022-00297-8

    Article  Google Scholar 

  12. Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-s-cale industrial engineering problems. Knowledge-based Systems, 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  13. Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18, 674–710. https://doi.org/10.1007/s42235-021-0050-y

    Article  Google Scholar 

  14. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, L., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  15. Piri, J., & Mohapatra, P. (2021). An analytical study of modified multi-objective Harris Hawk Optimizer towards medical data feature selection. Computers in Biology and Medicine., 135, 104558. https://doi.org/10.1016/j.compbiomed.2021.104558

    Article  Google Scholar 

  16. Alsattar, H. A., Zaidan, A. A., & Zaidan, B. B. (2020). Novel meta-heuristic bald eagle search optimisation algorithm. Artificial Intelligence Review, 53, 2237–2264. https://doi.org/10.1007/s10462-019-09732-5

    Article  Google Scholar 

  17. Sayed, G. I., Soliman, M. M., & Hassanien, A. E. (2021). A novel melanoma prediction model for imbalanced data using optimized SqueezeNet by bald eagle search optimization. Computers in Biology and Medicine., 136, 104712. https://doi.org/10.1016/j.compbiomed.2021.104712

    Article  Google Scholar 

  18. Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  19. Holland, J. H. (1992). Genetic algorithms. Scientific American, 267, 66–73. https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  20. Price, K. V. (2013). Differential evolution. Springer, Berlin, Heidelberg, Germany: Handbook of Optimization.

    Google Scholar 

  21. Qiao, K., Liang, J., Qu, B., Yu, K., Yue, C., & Song, H. (2022). Differential evolution with level-based learning mechanism. Complex System Modeling and Simulation, 2, 35–58. https://doi.org/10.23919/CSMS.2022.0004

    Article  Google Scholar 

  22. Yu, K., Zhang, D., Liang, J., Chen, K., Yue, C., Qiao, K., & Wang, L. (2022). A correlation-guided layered prediction approach for evolutionary dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/TEVC.2022.3193287

    Article  Google Scholar 

  23. Yu, K., Zhang, D., Liang, J., Luo, Y., & Yue, C. (2021). Dynamic selection preference-assisted constrained multiobjective differential evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52, 2954–2965. https://doi.org/10.1109/TSMC.2021.3061698

    Article  Google Scholar 

  24. Bayraktar, Z., Komurcu, M., Werner, D. H.. Wind Driven Optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics. 2010 IEEE Antennas and Propagation Society International Symposium. Toronto, ON, Canada, 2010, 1-4. Doi: https://doi.org/10.1109/APS.2010.5562213

  25. Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical Science, 8, 10–15. https://doi.org/10.1214/ss/1177011077

    Article  MATH  Google Scholar 

  26. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179, 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  27. Su, H., Zhao, D., Heidari, A. A., Liu, L., Zhang, X., Mafarja, M., & Chen, H. (2023). RIME: A physics-based optimization. Neurocomputing, 532, 183–214. https://doi.org/10.1016/j.neucom.2023.02.010

    Article  Google Scholar 

  28. Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23, 715–734. https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  29. Sharma, S., Saha, A. K., & Nama, S. (2020). An enhanced butterfly optimization algorithm for function optimi-zation. Soft Computing: Theories and Applications, Springer, Singapore.

    Google Scholar 

  30. Fathy, A. (2020). Butterfly optimization algorithm based methodology for enhancing the shaded photovoltaic array extracted power via reconfiguration process. Energy Conversion and Management, 220, 113115. https://doi.org/10.1016/j.enconman.2020.113115

    Article  Google Scholar 

  31. Arora, S., & Singh, S. (2017). An effective hybrid butterfly optimization algorithm with artificial bee colony for numerical optimization. International Journal of Interactive Multimedia and Artificial Intelligence, 4, 14–21. https://doi.org/10.9781/ijimai.2017.442

    Article  Google Scholar 

  32. Arora, S., & Anand, P. (2018). Learning automata-based butterfly optimization algorithm for engineering design problems. International Journal of Computational Materials Science and Engineering, 7, 1850021. https://doi.org/10.1142/S2047684118500215

    Article  Google Scholar 

  33. Arora, S., & Anand, P. (2019). Binary butterfly optimization approaches for feature selection. Expert Systems with Applications, 116, 147–160. https://doi.org/10.1016/j.eswa.2018.08.051

    Article  Google Scholar 

  34. Arora, S., Singh, S., & Yetilmezsoy, K. (2018). A modified butterfly optimization algorithm for mechanical design optimization problems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 1–17. https://doi.org/10.1007/s40430-017-0927-1

    Article  Google Scholar 

  35. Thawkar, S., Sharma, S., Khanna, M., & Singh, L. K. (2021). Breast cancer prediction using a hybrid method based on butterfly optimization algorithm and ant lion optimizer. Computers in Biology and Medicine, 139, 104968. https://doi.org/10.1016/J.COMPBIOMED.2021.104968

    Article  Google Scholar 

  36. Yuan, Z., Wang, W. Q., Wang, H. Y., & Khodaei, H. (2020). Improved butterfly optimization algorithm for CCHP driven by PEMFC. Applied Thermal Engineering, 173, 114766. https://doi.org/10.1016/j.applthermaleng.2019.114766

    Article  Google Scholar 

  37. Utama, D. M., Widodo, D. S., Ibrahim, M. F., & Dewi, S. (2020). A new hybrid butterfly optimization algorithm for green vehicle routing problem. Journal of Advanced Transportation, 2020, 1–14. https://doi.org/10.1155/2020/8834502

    Article  Google Scholar 

  38. Wang, Z., Luo, Q., & Zhou, Y. (2021). Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems. Engineering with Computers, 37, 3665–3698. https://doi.org/10.1007/s00366-020-01025-8

    Article  Google Scholar 

  39. Shahbandegan, A., Naderi., M.. A binary butterfly optimization algorithm for the multidimensional knapsack problem. 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Mashhad, Iran, 2020 Doi: https://doi.org/10.1109/ICSPIS51611.2020.9349589

  40. El-Hasnony, I. M., Elhoseny, M., & Tarek, Z. (2022). A hybrid feature selection model based on butterf-ly optimization algorithm: COVID-19 as a case study. Expert Systems., 39, e12786. https://doi.org/10.1111/exsy.12786

    Article  Google Scholar 

  41. Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41, 3538–3560. https://doi.org/10.1016/j.eswa.2013.10.059

    Article  Google Scholar 

  42. Lei, M., Zhou, Y., & Luo, Q. (2019). Enhanced metaheuristic optimization: Wind-driven flower pollination algorithm. IEEE Access, 7, 111439–111465. https://doi.org/10.1109/ACCESS.2019.2934733

    Article  Google Scholar 

  43. Zhong, L., Zhou, Y., Luo, Q., & Zhong, K. (2021). Wind driven dragonfly algorithm for global optimization. Concurrency and Computation: Practice and Experience, 33, e6054. https://doi.org/10.1002/cpe.6054

    Article  Google Scholar 

  44. Dubkov, A. A., Spagnolo, B., & Uchaikin, V. V. (2008). Lévy flight superdiffusion: An introduction. International Journal of Bifurcation and Chaos, 18, 2649–2672. https://doi.org/10.1142/S0218127408021877

    Article  MathSciNet  MATH  Google Scholar 

  45. Ma, W., Sun, Z., Li, J., Song, M., Lang, X., & Le, C. (2015). An artificial bee colony algorithm guided by Lévy flights disturbance strategy for global optimization. Proceedings of the Second International Conference on Mechatronics and Automatic Control, 2015, 493–503. https://doi.org/10.1007/978-3-319-13707-0_54

    Article  Google Scholar 

  46. Barisal, A. K., Panigrahi, T. K., & Mishra, S. (2017). A hybrid PSO-Lévy flight algorithm based fuzzy PID controller for automatic generation control of multi area power systems: Fuzzy based hybrid PSO for automatic generation control. International Journal of Energy Optimization and Engineering, 6, 42–63. https://doi.org/10.4018/IJEOE.2017040103

    Article  Google Scholar 

  47. Iglesias, A., Gálvez, A., Suárez, P., Shinya, M., Yoshida, N., Otero, C., Manchado, C., & Gomez-Jauregui, V. (2018). Cuckoo search algorithm with Lévy flights for global-support parametric surface approximation in reverse engineering. Symmetry, 10, 58. https://doi.org/10.3390/sym10030058

    Article  Google Scholar 

  48. Li, Y., Li, X., Liu, J., & Ruan, X. (2019). An improved bat algorithm based on lévy flights and adjustment factors. Symmetry, 11, 925. https://doi.org/10.3390/sym11070925

    Article  Google Scholar 

  49. O’Dwyer, A. (2000). A summary of PI and PID controller tuning rules for processes with time delay. Part 1: PI controller tuning rules. IFAC Proceedings Volumes, 33, 159–164. https://doi.org/10.1016/S1474-6670(17)38237-X

    Article  Google Scholar 

  50. Ang, K. H., Chong, G., & Li, Y. (2005). PID control system analysis, design, and technology. IEEE Transactions onControl Systems Technology, 13, 559–576. https://doi.org/10.1109/TCST.2005.847331

    Article  Google Scholar 

  51. Page, P. R., Abu-Mahfouz, A. M., & Yoyo, S. (2016). Real-time adjustment of pressure to demand in water distribution systems: Parameter-less P-controller algorithm. Procedia Engineering, 154, 391–397. https://doi.org/10.1016/j.proeng.2016.07.498

    Article  Google Scholar 

  52. Misir, D., Malki, H. A., & Chen, G. (1996). Design and analysis of a fuzzy proportional-integral-derivative controller. Fuzzy Sets and Systems, 79, 297–314. https://doi.org/10.1016/0165-0114(95)00149-2

    Article  MathSciNet  MATH  Google Scholar 

  53. Wang, Y. G., & Shao, H. H. (2000). Optimal tuning for PI controller. Automatica, 36, 147–152. https://doi.org/10.1016/S0005-1098(99)00130-2

    Article  MathSciNet  MATH  Google Scholar 

  54. Sahib, M. A., & Ahmed, B. S. (2016). A new multiobjective performance criterion used in PID tuning optimization algorithms. Journal of Advanced Research, 7, 125–134. https://doi.org/10.1016/j.jare.2015.03.004

    Article  Google Scholar 

  55. Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Ashour, A. S., & Balas, V. E. (2017). Design of a proportional-integral-derivative controller for an automatic generation control of multi-area power thermal systems using firefly algorithm. IEEE/CAA Journal of Automatica Sinica, 6, 503–515. https://doi.org/10.1109/JAS.2017.7510436

    Article  Google Scholar 

  56. Chatterjee, S., & Mukherjee, V. (2016). PID controller for automatic voltage regulator using teaching–learning based optimization technique. International Journal of Electrical Power & Energy Systems, 77, 418–429. https://doi.org/10.1016/j.ijepes.2015.11.010

    Article  Google Scholar 

  57. İzci, D., Ekinci, S., & Ekinci, S. (2021). Comparative performance analysis of slime mould algorithm f-or efficient design of proportional–integral–derivative controller. Electrica, 21, 151–159. https://doi.org/10.5152/electrica.2021.20077

    Article  Google Scholar 

  58. Assawinchaichote, W., Angeli, C., & Pongfai, J. (2022). Proportional-Integral-Derivative Parametric Auto-tuning by Novel Stable Particle Swarm Optimization (NSPSO). IEEE Access, 10, 40818–40828. https://doi.org/10.1109/ACCESS.2022.3167026

    Article  Google Scholar 

  59. Sharma, S., & Saha, A. K. (2020). m-MBOA: A novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Computing, 24, 4809–4827. https://doi.org/10.1007/s00500-019-04234-6

    Article  Google Scholar 

  60. Long, W., Jiao, J., Liang, X., Wu, T., Xu, M., & Cai, S. (2021). Pinhole-imaging-based learning butterfly optimization algorithm for global optimization and feature selection. Applied Soft Computing, 103, 107146. https://doi.org/10.1016/j.asoc.2021.107146

    Article  Google Scholar 

  61. Zhang, M., Wang, D., & Yang, J. (2022). Hybrid-flash butterfly optimization algorithm with logistic ma-pping for solving the engineering constrained optimization problems. Entropy, 24, 525. https://doi.org/10.3390/e24040525

    Article  Google Scholar 

  62. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms. Computers & Industrial Engineering, 137, 106040. https://doi.org/10.1016/j.cie.2019.106040

    Article  Google Scholar 

  63. Sharma, S., Chakraborty, S., Saha, A. K., Nama, S., & Sahoo, S. K. (2022). MLBOA: A modified butterfly optimization algorithm with lagrange interpolation for global optimization. Journal of Bionic Engineering, 19, 1161–1176. https://doi.org/10.1007/s42235-022-00175-3

    Article  Google Scholar 

  64. Zhang, M. J., Long, D. Y., Qin, T., & Yang, J. (2020). A chaotic hybrid butterfly optimization algorithm with particle swarm optimization for high-dimensional optimization problems. Symmetry-Basel, 12, 1800. https://doi.org/10.3390/sym12111800

    Article  Google Scholar 

  65. Wu, G., Mallipeddi, R., Suganthan, P. N.. 2017 Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Technical Report. Singapore

  66. Mohamed, A. W., Hadi, A. A., Mohamed, A. K., Awad, N. H.. Evaluating the performance of adap-tive gainingsharing knowledge based algorithm on CEC 2020 benchmark problems. 2020 IEEE Congress on Evolutionary Computation (CEC). Glasgow, UK, 2020: 1-8. Doi: https://doi.org/10.1109/CEC48606.2020.9185901

  67. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-based Systems, 96, 120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  68. Vesterstrom, J., Thomsen, R.. 2004 A comparative study of differential evolution, particle swarm optimizat-ion, and evolutionary algorithms on numerical benchmark problems. Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753). Portland, OR, USA

  69. Lim, S. P., Haron, H.. 2013 Performance comparison of genetic algorithm, differential evolution and particle swarm optimization towards benchmark functions. 2013 IEEE Conference on Open Systems (ICOS). Kuching, Malaysia Doi: https://doi.org/10.1109/ICOS.2013.6735045

  70. Li, X., & Yang, G. (2016). Artificial bee colony algorithm with memory. Applied Soft Computing, 41, 362–372. https://doi.org/10.1016/j.asoc.2015.12.046

    Article  Google Scholar 

  71. Bayraktar, Z., & Komurcu, M. (2016). Adaptive wind driven optimization. EAI Endorsed Transactions on Serious Games, 3, 124–127. https://doi.org/10.4108/eai.3-12-2015.2262424

    Article  Google Scholar 

  72. Li, W., & Wang, G. G. (2023). Improved elephant herding optimization using opposition-based learning and k-means clustering to solve numerical optimization problems. Journal of Ambient Intelligence and Humanized Computing, 14, 1753–1784. https://doi.org/10.1007/s12652-021-03391-7

    Article  Google Scholar 

  73. Saad, E., Elhosseini, M. A., & Haikal, A. Y. (2019). Culture-based artificial bee colony with heritage mechanism for optimization of wireless sensors network. Applied Soft Computing, 79, 59–73. https://doi.org/10.1016/j.asoc.2019.03.040

    Article  Google Scholar 

  74. Ewees, A. A., Mostafa, R. R., Ghoniem, R. M., & Gaheen, M. A. (2022). Improved seagull optimization algorithm using Lévy flight and mutation operator for feature selection. Neural Computing and Applications, 34, 7437–7472. https://doi.org/10.1007/s00521-021-06751-8

    Article  Google Scholar 

  75. Sharma, S., Saha, A. K., Roy, S., Mirjalili, S., & Nama, S. (2022). A mixed sine cosine butterfly opti-mization algorithm for global optimization and its application. Cluster Computing, 25, 4573–4600. https://doi.org/10.1007/s10586-022-03649-5

    Article  Google Scholar 

  76. Tang, Z., Tao, S., Wang, K., Lu, B., Todo, Y., & Gao, S. (2022). Chaotic wind driven optimization with fitness distance balance strategy. International Journal of Computational Intelligence Systems, 15, 46. https://doi.org/10.1007/s44196-022-00099-0

    Article  Google Scholar 

  77. Mousavirad, S. J., & Rahnamayan, S. (2020). A novel center-based particle swarm optimization algorithm for large-scale optimization. IEEE international conference on systems, man, and cybernetics (SMC). Toronto, ON, Canada, 2020, 2066–2071. https://doi.org/10.1109/SMC42975.2020.9283143

    Article  Google Scholar 

  78. Mousavirad, S. J., Rahnamayan, S.. Differential evolution algorithm based on a competition scheme. 2019 14th International Conference on Computer Science & Education (ICCSE). Toronto, ON, Canada, 2019: 929–934. Doi: https://doi.org/10.1109/ICCSE.2019.8845065

  79. Zhao, S., Zhang, T., Ma, S., & Chen, M. (2022). Dandelion optimizer: a nature-inspired metaheuristic algorithm for engineering applications. Engineering Applications of Artificial Intelligence, 114, 105075. https://doi.org/10.1016/j.engappai.2022.105075

    Article  Google Scholar 

  80. Yavuz, G., Durmuş, B., & Aydın, D. (2022). Artificial bee colony algorithm with distant savants for constrained optimization. Applied Soft Computing, 116, 108343. https://doi.org/10.1016/j.asoc.2021.108343

    Article  Google Scholar 

  81. Alsamia, S., Albedran, H., Jármai, K.. 2022 Comparative study of different metaheuristics on CEC 2020 benchmarks. Vehicle and Automotive Engineering 4: Select Proceedings of the 4th VAE2022, Hunga-ry, Miskolc. Cham, Switzerland. Springer International Publishing, 709–719. Doi: https://doi.org/10.1007/978-3-031-15211-5_59

  82. Agushaka, J. O., Ezugwu, A. E., Abualigah, L., Alharbi, S. K., & Khalifa, H.A.E.-W. (2023). Efficient initialization methods for population-based metaheuristic algorithms: A comparative study. Archives of Computational Methods in Engineering, 30, 1727–1787. https://doi.org/10.1007/s11831-022-09850-4

    Article  Google Scholar 

  83. Guo, Y. F., Xi, B., Shen, Y. J., & Tan, J. G. (2016). Mean first-passage time of second-order and und-er-damped asymmetric bistable model. Applied Mathematical Modelling, 40, 9445–9453. https://doi.org/10.1016/j.apm.2016.06.009

    Article  MathSciNet  MATH  Google Scholar 

  84. Mohanty, P. K., Sahu, B. K., & Panda, S. (2014). Tuning and assessment of proportional-integral-derivative controller for an automatic voltage regulator system employing local unimodal sampling algorithm. Electric Power Components and Systems, 42, 959–969. https://doi.org/10.1080/15325008.2014.903546

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China under Grant U21A20464, 62066005. Project of the Guangxi Science and Technology under Grant No.ZL23014016.

Author information

Authors and Affiliations

Authors

Contributions

YH Conceptualization, Methodology, Formal analysis, Investigation, Writing – original draft. YZ Conceptualization, Resources, Writing – review & editing, Supervision, Funding acquisition. YW Conceptualization, Writing – review & editing. QL: Conceptualization, Writing – review & editing. WD: Conceptualization, Writing – review & editing.

Corresponding authors

Correspondence to Yongquan Zhou or Qifang Luo.

Ethics declarations

Conflicts of Interest

All the work outlined in this paper is our own except where otherwise acknowledged and referenced. The work contained in the manuscript has not been previously published, in whole or part, and is not under consideration by any other journal. All authors are aware of and accept responsibility for the Manuscript. The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhou, Y., Wei, Y. et al. Wind Driven Butterfly Optimization Algorithm with Hybrid Mechanism Avoiding Natural Enemies for Global Optimization and PID Controller Design. J Bionic Eng 20, 2935–2972 (2023). https://doi.org/10.1007/s42235-023-00416-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00416-z

Keywords

Navigation