Skip to main content
Log in

A Hybrid Marine Predator Algorithm for Thermal-aware Routing Scheme in Wireless Body Area Networks

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Thermal-aware routing protocols in WBANs consider temperature factors in the routing process for preventing overheating of the tissues surrounding the sensor nodes. However, providing an energy-efficient and thermal-aware routing in WBANs is a challenging issue. To deal with this problem, this article presents a novel temperature-aware routing protocol that applies Mamdani-based Fuzzy Logic Controllers (FLCs) for selecting the next forwarding node in routing data packets. These FLCs apply five important input factors such as the priority of the packet, and sensor node's remaining energy, temperature, distance, and link path loss. Also, a new hybrid version of the Marine Predator Algorithm (MPA), named MPAOA is presented by combining the exploration and exploitation phases of the MPA and Arithmetic Optimization Algorithm (AOA). This algorithm is effectively applied for selecting the best possible set of fuzzy rules for FLCs and tuning their fuzzy sets. Extensive experiments conducted in the Castalia simulator exhibit that the proposed temperature and priority-aware routing scheme can outperform other well-known routing schemes such as LATOR, TTRP, TAEO, ATAR, and EOCC-TARA in terms of metrics such as sensor nodes lifetime, the average temperature of the sensor nodes, and the percentage of the packets routed through non-overheated paths. Besides, it is shown that the MPAOA outperforms other algorithms such as Bat Algorithm (BA), Genetic Algorithm (GA), AOA, and MPA regarding the specified metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Statements data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. Abderazek, H., Hamza, F., Yildiz, A. R., & Sait, S. M. (2021). Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design. Materials Testing, 63(3), 266–271.

    Google Scholar 

  2. Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158.

    Google Scholar 

  3. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609.

    MathSciNet  MATH  Google Scholar 

  4. Abualigah, L., Diabat, A., Sumari, P., & Gandomi, A. H. (2021). Applications, deployments, and integration of internet of drones (iod): A review. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2021.3114266

    Article  Google Scholar 

  5. Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-Qaness, M. A., & Gandomi, A. H. (2021). Aquila optimizer: A novel meta-heuristic optimization algorithm. Computers & Industrial Engineering, 157, 107250.

    Google Scholar 

  6. Agushaka, J. O., Ezugwu, A. E., & Abualigah, L. (2022). Dwarf mongoose optimization algorithm. Computer Methods in Applied Mechanics and Engineering, 391, 114570.

    MathSciNet  MATH  Google Scholar 

  7. Ahmed, O., Ren, F., Hawbani, A., & Al-Sharabi, Y. (2020). Energy optimized congestion control-based temperature aware routing algorithm for software defined wireless body area networks. IEEE Access, 8, 41085–41099.

    Google Scholar 

  8. Al-Janabi, S., Al-Shourbaji, I., Shojafar, M., & Shamshirband, S. (2017). Survey of main challenges (security and privacy) in wireless body area networks for healthcare applications. Egyptian Informatics Journal, 18(2), 113–122.

    Google Scholar 

  9. Argade, N. (2013). Global Routing Protocols for Wireless Body Area Networks.

  10. Babazadeh Nanehkaran, A., & Rezvani, M. H. (2021). An incentive-compatible routing protocol for delay-tolerant networks using second-price sealed-bid auction mechanism. Wireless Personal Communications, 121(3), 1547–1576.

    Google Scholar 

  11. Bala, R. (2014). An Energy Efficient Routing protocol in Wireless Body Area Networks.

  12. Banuselvasaraswathy, B., & Rathinasabapathy, V. (2020). Self-heat controlling energy efficient OPOT routing protocol for WBAN. Wireless Networks. https://doi.org/10.1007/s11276-020-02303-5

    Article  Google Scholar 

  13. Bhangwar, A. R., Ahmed, A., Khan, U. A., Saba, T., Almustafa, K., Haseeb, K., & Islam, N. (2019). WETRP: Weight based energy & temperature aware routing protocol for wireless body sensor networks. IEEE Access, 7, 87987–87995.

    Google Scholar 

  14. Bhangwar, A. R., Kumar, P., Ahmed, A., & Channa, M. I. (2017). Trust and thermal aware routing protocol (TTRP) for wireless body area networks. Wireless Personal Communications, 97(1), 349–364.

    Google Scholar 

  15. Caballero, E., Ferreira, V. C., Lima, R. A., Albuquerque, C., & Muchaluat-Saade, D. C. (2020). Lator: Link-quality aware and thermal aware on-demand routing protocol for wban. Paper presented at the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP).

  16. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011). CloudSim: A toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience, 41(1), 23–50.

    Google Scholar 

  17. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. Communications Surveys & Tutorials, IEEE, 16(3), 1635–1657.

    Google Scholar 

  18. Chakraborty, S., Saha, A. K., Chakraborty, R., & Saha, M. (2021). An enhanced whale optimization algorithm for large scale optimization problems. Knowledge-Based Systems, 233, 107543.

    Google Scholar 

  19. Chakraborty, S., Saha, A. K., Sharma, S., Sahoo, S. K., & Pal, G. (2022). Comparative performance analysis of differential evolution variants on engineering design problems. Journal of Bionic Engineering, 19(4), 1140–1160.

    Google Scholar 

  20. Chavez-Santiago, R., Sayrafian-Pour, K., Khaleghi, A., Takizawa, K., Jianqing, W., Balasingham, I., & Huan-Bang, L. (2013). Propagation models for IEEE 802.15.6 standardization of implant communication in body area networks. Communications Magazine, IEEE, 51(8), 80–87. https://doi.org/10.1109/MCOM.2013.6576343

    Article  Google Scholar 

  21. Crosby, G. V., Ghosh, T., Murimi, R., & Chin, C. A. (2012). Wireless body area networks for healthcare: a survey. International Journal of Ad Hoc, Sensor & Ubiquitous Computing, 3, 1.

    Google Scholar 

  22. Ghafouri-ghomi, Z., & Rezvani, M. H. (2022). An optimized message routing approach inspired by the landlord-peasants game in disruption-tolerant networks. Ad Hoc Networks, 127, 102781.

    Google Scholar 

  23. Gharehpasha, S., & Masdari, M. (2021). A discrete chaotic multi-objective SCA-ALO optimization algorithm for an optimal virtual machine placement in cloud data center. Journal of Ambient Intelligence and Humanized Computing, 12(10), 9323–9339.

    Google Scholar 

  24. Gupta, S., Abderazek, H., Yıldız, B. S., Yildiz, A. R., Mirjalili, S., & Sait, S. M. (2021). Comparison of metaheuristic optimization algorithms for solving constrained mechanical design optimization problems. Expert Systems with Applications, 183, 115351.

    Google Scholar 

  25. Huang, R., Nie, Z., Duan, C., Liu, Y., Jia, L., & Wang, L. (2015). Analysis and comparison of the IEEE 802.15. 4 and 802.15. 6 wireless standards based on MAC layer. In: Health information science (pp. 7–16): Springer.

  26. Imtiaz, S., Khan, M. M., Mamun-or-Rashid, M., & Rahman, M. M. (2013). Improved adaptive routing for multihop IEEE 802.15. 6 wireless body area networks. International Journal of Intelligent Systems and Applications (IJISA), 5(12), 64.

    Google Scholar 

  27. Irum, S., Ali, A., Khan, F. A., & Abbas, H. (2013). A hybrid security mechanism for intra-WBAN and inter-WBAN communications. International Journal of Distributed Sensor Networks, 9, 842608.

    Google Scholar 

  28. Jamil, F., Iqbal, M. A., Amin, R., & Kim, D. (2019). Adaptive thermal-aware routing protocol for wireless body area network. Electronics, 8(1), 47.

    Google Scholar 

  29. Javadi, S. S., & Razzaque, M. (2013). Security and privacy in wireless body area networks for health care applications. In: Wireless networks and security (pp. 165–187). Springer.

  30. Javed, M., Ahmed, G., Mahmood, D., Raza, M., Ali, K., & Ur-Rehman, M. (2019). TAEO-A thermal aware & energy optimized routing protocol for wireless body area networks. Sensors, 19(15), 3275.

    Google Scholar 

  31. Jeong, H.-J., Lee, H.-J., Shin, C. H., & Moon, S.-M. (2018). IONN: Incremental offloading of neural network computations from mobile devices to edge servers. Paper presented at the Proceedings of the ACM Symposium on Cloud Computing.

  32. Kathe, K., & Deshpande, U. A. (2019). A thermal aware routing algorithm for a wireless body area network. Wireless Personal Communications, 105(4), 1353–1380.

    Google Scholar 

  33. Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.

    Google Scholar 

  34. Masdari, M., & Ahmadzadeh, S. (2017). A survey and taxonomy of the authentication schemes in Telecare Medicine Information Systems. Journal of Network and Computer Applications, 87, 1–19.

    Google Scholar 

  35. Masdari, M., Ahmadzadeh, S., & Bidaki, M. (2017). Key management in wireless Body Area Network: Challenges and issues. Journal of Network and Computer Applications, 91, 36–51.

    Google Scholar 

  36. Masdari, M., Barshande, S., & Ozdemir, S. (2019). CDABC: Chaotic discrete artificial bee colony algorithm for multi-level clustering in large-scale WSNs. The Journal of Supercomputing, 75(11), 7174–7208.

    Google Scholar 

  37. Masdari, M., & Barshandeh, S. (2020). Discrete teaching–learning-based optimization algorithm for clustering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5459–5476.

    Google Scholar 

  38. Masdari, M., Bazarchi, S. M., & Bidaki, M. (2013). Analysis of secure LEACH-based clustering protocols in wireless sensor networks. Journal of Network and Computer Applications, 36(4), 1243–1260.

    Google Scholar 

  39. Masdari, M., & Naghiloo, F. (2017). Fuzzy logic-based sink selection and load balancing in multi-sink wireless sensor networks. Wireless Personal Communications, 97(2), 2713–2739.

    Google Scholar 

  40. Masdari, M., & Özdemir, S. (2020). Towards coverage-aware fuzzy logic-based faulty node detection in heterogeneous wireless sensor networks. Wireless Personal Communications, 111(1), 581–610.

    Google Scholar 

  41. Mehta, P., Yildiz, B. S., Sait, S. M., & Yildiz, A. R. (2022). Hunger games search algorithm for global optimization of engineering design problems. Materials Testing, 64(4), 524–532.

    Google Scholar 

  42. Memon, S., Wang, J., Bhangwar, A. R., Fati, S. M., Rehman, A., Xu, T., & Zhang, L. (2021). Temperature and reliability-aware routing protocol for wireless body area networks. IEEE Access, 9, 140413–140423.

    Google Scholar 

  43. Nadimi-Shahraki, M. H., & Zamani, H. (2022). DMDE: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Systems with Applications, 198, 116895.

    Google Scholar 

  44. Ortiz, A. M., Ababneh, N., Timmons, N., & Morrison, J. (2012). Adaptive routing for multihop IEEE 802.15.6 Wireless Body Area Networks. Paper presented at the Software, Telecommunications and Computer Networks (SoftCOM), 2012 20th International Conference on.

  45. Otto, C. (2006). An implementation of a wireless body area network for ambulatory health monitoring. The University of Alabama in Huntsville.

  46. Otto, C., Milenkovic, A., Sanders, C., & Jovanov, E. (2006). System architecture of a wireless body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia, 1(4), 307–326.

    Google Scholar 

  47. Oyelade, O. N., Ezugwu, A.E.-S., Mohamed, T. I., & Abualigah, L. (2022). Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm. IEEE Access, 10, 16150–16177.

    Google Scholar 

  48. Qu, Y., Zheng, G., Ma, H., Wang, X., Ji, B., & Wu, H. (2019). A survey of routing protocols in WBAN for healthcare applications. Sensors, 19(7), 1638.

    Google Scholar 

  49. Sahoo, S. K., & Saha, A. K. (2022). A hybrid moth flame optimization algorithm for global optimization. Journal of Bionic Engineering, 1–22.

  50. Sampangi, R. V. (2015). Biomimetic metamorphic framework for security in resource-constrained wireless networks. Dalhousie University Halifax.

  51. Selem, E., Fatehy, M., & Abd El-Kader, S. M. (2021). mobthe (mobile temperature heterogeneity energy) aware routing protocol for wban iot health application. IEEE Access, 9, 18692–18705.

    Google Scholar 

  52. Selem, E., Fatehy, M., Abd El-Kader, S. M., & Nassar, H. (2019). THE (temperature heterogeneity energy) aware routing protocol for IoT health application. IEEE Access, 7, 108957–108968.

    Google Scholar 

  53. Shahbazi, Z., & Byun, Y.-C. (2020). Towards a secure thermal-energy aware routing protocol in Wireless Body Area Network based on blockchain technology. Sensors, 20(12), 3604.

    Google Scholar 

  54. Sharma, S., Saha, A. K., & Lohar, G. (2021). Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm. Engineering with Computers, 1–27.

  55. Sullivan, D. M. (2013). Electromagnetic simulation using the FDTD method. Wiley.

    Google Scholar 

  56. Tang, Q., Tummala, N., Gupta, S. K., & Schwiebert, L. (2005). TARA: Thermal-aware routing algorithm for implanted sensor networks. In: Distributed computing in sensor systems (pp. 206–217). Springer.

  57. Ullah, F., Khan, M. Z., Faisal, M., Rehman, H. U., Abbas, S., & Mubarek, F. S. (2021). An energy efficient and reliable routing scheme to enhance the stability period in wireless body area networks. Computer Communications, 165, 20–32.

    Google Scholar 

  58. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., Rahman, Z., & Kwak, K. S. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094.

    Google Scholar 

  59. Ullah, S., Mohaisen, M., & Alnuem, M. A. (2013). A review of IEEE 802.15. 6 MAC, PHY, and security specifications. International Journal of Distributed Sensor Networks, 9, 950704.

    Google Scholar 

  60. Ullah, Z., Ahmed, I., Khan, F. A., Asif, M., Nawaz, M., Ali, T., Khalid, M., & Niaz, F. (2019). Energy-efficient harvested-aware clustering and cooperative routing protocol for WBAN (E-HARP). IEEE Access, 7, 100036–100050.

    Google Scholar 

  61. Ullah, Z., Ahmed, I., Razzaq, K., Naseer, M. K., & Ahmed, N. (2019). DSCB: Dual sink approach using clustering in body area network. Peer-to-Peer Networking and Applications, 12(2), 357–370.

    Google Scholar 

  62. Venkateswari, R., & Subha Rani, S. (2012). Design of an energy efficient and delay tolerant routing protocol for wireless body area network. International Journal on Computer Science & Engineering, 4(5), 694.

    Google Scholar 

  63. Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65–85.

    Google Scholar 

  64. Yang, S., Lu, J.-L., Yang, F., Kong, L., Shu, W., & Wu, M.-Y. (2013). Behavior-aware probabilistic routing for wireless body area sensor networks. Paper presented at the Global Communications Conference (GLOBECOM), 2013 IEEE.

  65. Yang, X. S., & Gandomi, A. H. (2012). Bat algorithm: a novel approach for global engineering optimization. Engineering Computations.

  66. Yessad, N., Omar, M., Tari, A., & Bouabdallah, A. (2018). QoS-based routing in Wireless Body Area Networks: A survey and taxonomy. Computing, 100(3), 245–275.

    MathSciNet  Google Scholar 

  67. Yıldız, A., Pholdee, N., Bureerat, S., Yıldız, A., & Sait, S. M. (2020). Sine-cosine optimization algorithm for the conceptual design of automobile components. Materials Testing, 62(7), 744–748.

    Google Scholar 

  68. Yıldız, B. S., Kumar, S., Pholdee, N., Bureerat, S., Sait, S. M., & Yildiz, A. R. (2022). A new chaotic Lévy flight distribution optimization algorithm for solving constrained engineering problems. Expert Systems, e12992.

  69. Yıldız, B. S., Patel, V., Pholdee, N., Sait, S. M., Bureerat, S., & Yıldız, A. R. (2021). Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design. Materials Testing, 63(4), 336–340.

    Google Scholar 

  70. Yıldız, B. S., Pholdee, N., Bureerat, S., Erdaş, M. U., Yıldız, A. R., & Sait, S. M. (2021). Comparision of the political optimization algorithm, the Archimedes optimization algorithm and the Levy flight algorithm for design optimization in industry. Materials Testing, 63(4), 356–359.

    Google Scholar 

  71. Yıldız, B. S., Pholdee, N., Panagant, N., Bureerat, S., Yildiz, A. R., & Sait, S. M. (2021). A novel chaotic Henry gas solubility optimization algorithm for solving real-world engineering problems. Engineering with Computers, 1–13.

  72. Zamani, H., Nadimi-Shahraki, M. H., & Gandomi, A. H. (2022). Starling murmuration optimizer: A novel bio-inspired algorithm for global and engineering optimization. Computer Methods in Applied Mechanics and Engineering, 392, 114616.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61862051), the Science and Technology Foundation of Guizhou Province (No. [2019]1299, No. ZK[2022]550), the Top-Notch Talent Program of Guizhou Province (No. KY[2018]080), the Natural Science Foundation of Education of Guizhou Province (No. [2019]203) and the Funds of Qiannan Normal University for Nationalities (No. qnsy2018003, No. qnsy2019rc09, No. qnsy2018JS013, No. qnsyrc201715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Masdari.

Ethics declarations

Conflict of interest

We certify that there is no actual or potential conflict of interest in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, T., Zhou, J., Masdari, M. et al. A Hybrid Marine Predator Algorithm for Thermal-aware Routing Scheme in Wireless Body Area Networks. J Bionic Eng 20, 81–104 (2023). https://doi.org/10.1007/s42235-022-00263-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00263-4

Keywords

Navigation