Skip to main content
Log in

A Fully Soft Bionic Grasping Device with the Properties of Segmental Bending Shape and Automatically Adjusting Grasping Range

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In this paper, we propose a fully Soft Bionic Grasping Device (SBGD), which has advantages in automatically adjusting the grasping range, variable stiffness, and controllable bending shape. This device consists of soft gripper structures and a soft bionic bracket structure. We adopt the local thin-walled design in the soft gripper structures. This design improves the grippers’ bending efficiency, and imitate human finger’s segmental bending function. In addition, this work also proposes a pneumatic soft bionic bracket structure, which not only can fix grippers, but also can automatically adjust the grasping space by imitating the human adjacent fingers’ opening and closing movements. Due to the above advantages, the SBGD can grasp larger or smaller objects than the regular grasping devices. Particularly, to grasp small objects reliably, we further present a new Pinching Grasping (PG) method. The great performance of the fully SBGD is verified by experiments. This work will promote innovative development of the soft bionic grasping robots, and greatly meet the applications of dexterous grasping multi-size and multi-shape objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Guan, Q. H., Sun, J., Liu, Y. J., & Leng, J. S. (2020). Status of and trends in soft pneumatic robotics. Science China-Technological Sciences, 50, 897–934.

    Google Scholar 

  2. Xiao, W., Hu, D., Chen, W. X., Yang, G., & Han, X. (2021). Design, characterization and optimization of multi-directional bending pneumatic artificial muscles. Journal of Bionic Engineering, 18, 1358–1368.

    Article  Google Scholar 

  3. Chen, Y. X., Hu, B. B., Zou, J. K., Zhang, W. W., Wang, D. S., & Jin, G. Q. (2020). Design and fabrication of a multi-motion mode soft crawling robot. Journal of Bionic Engineering, 17, 932–943.

    Article  Google Scholar 

  4. Zhang, Z., Ni, X. Q., Wu, H. L., Sun, M., Bao, G. J., Wu, H. P., & Jiang, S. F. (2022). Pneumatically actuated soft gripper with bistable structures. Soft Robotics, 9, 57–71.

    Article  Google Scholar 

  5. Deng, L. N., Shen, Y., Fan, G. L., He, X., Li, Z., & Yuan, Y. (2022). Design of a soft gripper with improved microfluidic tactile sensors for classification of deformable objects. IEEE Robotics and Automation Letters, 7, 5607–5614.

    Article  Google Scholar 

  6. Cheng, L., Chen, M., & Li, Z. W. (2018). Design and control of a wearable hand rehabilitation robot. IEEE Access, 6, 74039–74050.

    Article  Google Scholar 

  7. Wu, X. Y., Fang, K., Chen, C. J., & Zhang, Y. (2020). Development of a lower limb multi-joint assistance soft exosuit. Science China Information Sciences, 63, 170207.

    Article  Google Scholar 

  8. Abbaszadeh, S., Leidhold, R., & Hoerner, S. (2022). A design concept and kinematic model for a soft aquatic robot with complex bio-mimicking motion. Journal of Bionic Engineering, 19, 16–28.

    Article  Google Scholar 

  9. Li, J. F., & Pi, Y. Y. (2021). Fuzzy time delay algorithms for position control of soft robot actuated by shape memory alloy. International Journal of Control, Automation and Systems, 6, 2203–2212.

    Article  Google Scholar 

  10. Patterson, Z. J., Sabelhaus, A. P., & Majidi, C. (2022). Robust control of a multi-axis shape memory alloy-driven soft manipulator. IEEE Robotics and Automation Letters, 7, 2210–2217.

    Article  Google Scholar 

  11. Cheng, L., Liu, W. C., Yang, C. G., Huang, T. W., Hou, Z. G., & Tan, M. (2017). A neural-network-based controller for piezoelectric-actuated stick-slip devices. IEEE Transactions on Industrial Electronics, 65, 2598–2607.

    Article  Google Scholar 

  12. Guin, T., Settle, M. J., Kowalski, B. A., Auguste, A. D., Beblo, R. V., Reich, G. W., & White, T. J. (2018). Layered liquid crystal elastomer actuators. Nature Communications, 9, 2531.

    Article  Google Scholar 

  13. Fang, B., Sun, F. C., Wu, L. Y., Liu, F. K., Wang, X. X., Huang, H. M., Huang, W. B., Liu, H. P., & Wen, L. (2021). Multimode grasping soft gripper achieved by layer jamming structure and tendon-driven mechanism. Soft Robotics: Advance online publication. https://doi.org/10.1089/soro.2020.0065

    Book  Google Scholar 

  14. Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature. IEEE Transactions on Robots, 31, 823–834.

    Article  Google Scholar 

  15. Sui, X., Zheng, T. J., Qi, J., Yang, Z. Y., Zhao, N., Zhao, J., Cai, H. G., & Zhu, Y. H. (2022). Task-oriented hierarchical control of modular soft robots with external vision guidance. Journal of Bionic Engineering, 19, 657–667.

    Article  Google Scholar 

  16. Ru, H. G., Huang, J., Chen, W. B., Xiong, C. H., Wang, J. Z., & Huo, J. (2019). Design, modelling and identification of a fiber-reinforced bending pneumatic muscle. Science China Information Sciences, 62, 50213.

    Article  Google Scholar 

  17. Feng, N. S., Shi, Q. R., Wang, H., Gong, J. L., Liu, C., & Lu, Z. G. (2018). A soft robotic hand: design, analysis, semg control, and experiment. International Journal of Advanced Manufacturing Technology, 97, 319–333.

    Article  Google Scholar 

  18. Feng, N. S., Wang, H., Hu, F., Gouda, M. A., Gong, J. L., & Wang, F. (2019). A fiber-reinforced human-like soft robotic manipulator based on semg force estimation. Engineering Applications of Artificial Intelligence, 86, 56–67.

    Article  Google Scholar 

  19. Zhu, M. Z., Mori, Y., Wakayama, T., Wada, A., & Kawamura, S. (2019). A fully multi-material three-dimensional printed soft gripper with variable stiffness for robust grasping. Soft Robotics, 6, 507–519.

    Article  Google Scholar 

  20. Yang, Y., Zhang, Y. Z., Kan, Z. C., Zeng, J. L., & Wang, M. Y. (2020). Hybrid jamming for bioinspired soft robotic fingers. Soft Robotics, 7, 292–308.

    Article  Google Scholar 

  21. Narang, Y. S., Vlassak, J. J., & Howe, R. D. (2018). Mechanically versatile soft machines through laminar jamming. Advanced Functional Materials, 28, 1707136.

    Article  Google Scholar 

  22. Zhang, Y., Wang, D. X., Wang, Z. Q., Zhang, Y. R., & Xiao, J. (2019). Passive force-feedback gloves with joint-based variable impedance using layer jamming. IEEE Transactions on Haptics, 12, 269–280.

    Article  Google Scholar 

  23. Sun, T., Chen, Y. L., Han, T. Y., Jiao, C. L., Lian, B. B., & Song, Y. M. (2020). A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller. Robotics and Computer-Integrated Manufacturing, 61, 101848.

    Article  Google Scholar 

  24. Zhong, G. L., Hou, Y. D., & Dou, W. Q. (2019). A soft pneumatic dexterous gripper with convertible grasping modes. International Journal of Mechanical Sciences, 153, 445–456.

    Article  Google Scholar 

  25. Sun, Y. L., Zhang, Q. J., & Chen, X. Y. (2020). Design and analysis of a flexible robotic hand with soft fingers and a changeable palm. Advanced Robotics, 34, 1041–1054.

    Article  Google Scholar 

  26. Polygerinos, P., Wang, Z., Overvelde, J. T., Galloway, K. C., Wood, R. J., Bertoldi, K., & Walsh, C. J. (2015). Modeling of soft fiber-reinforced bending actuators. IEEE Transactions on Robots, 31, 778–789.

    Article  Google Scholar 

  27. Hao, Y. F., Gong, Z. Y., Xie, Z. X., Guan, S. Y., Yang, X. B., Wang, T. M., & Wen, L. (2018). A soft bionic gripper with variable effective length. Journal of Bionic Engineering, 15, 220–235.

    Article  Google Scholar 

  28. Wang, H. H., Xu, H., Abu-Dakka, F. J., Kyrki, V., Yang, C., Li, X., & Chen, S. Q. (2022). A bidirectional soft biomimetic hand driven by water hydraulic for dexterous underwater grasping. IEEE Robotics and Automation Letters, 7, 2186–2193.

    Article  Google Scholar 

  29. Liu, S. F., Wang, F. J., Liu, Z., Zhang, W., Tian, Y. L., & Zhang, D. W. (2020). A two-finger soft-robotic gripper with enveloping and pinching grasping modes. IEEE/ASME Transactions on Mechatronics, 26, 146–155.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and editors whose insightful comments and valuable suggestions are crucial to the improvement of the manuscript. The authors would like to thank Professor Li Wen of Beihang University, for his careful revising the early version of this manuscript.

Funding

This work was funded by the National Natural Science Foundation of China under Grant 62073305, the Fundamental Research Funds for the Central Universities, China University of Geosciences(Wuhan)(Nos. CUG170610 and CUGGC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zong.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, L., Zong, X. A Fully Soft Bionic Grasping Device with the Properties of Segmental Bending Shape and Automatically Adjusting Grasping Range. J Bionic Eng 19, 1334–1348 (2022). https://doi.org/10.1007/s42235-022-00209-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00209-w

Keywords

Navigation