Skip to main content
Log in

Design and Control of a Quasi-direct Drive Actuated Knee Exoskeleton

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper describes the design and control of a portable and lightweight knee exoskeleton for people with knee dysfunction. The knee exoskeleton is designed based on our custom quasi-direct drive actuation composed of a DC motor unit and a transmission mechanism encompassing three gears. An online gait generation method based on gait step calculation and direct measurement using Inertial Measurement Unit (IMU) sensors is proposed to provide continuous assistance during walking. Based on the generated gait trajectory online, Active Disturbance Rejection Control (ADRC) incorporating the feedforward compensation approach is proposed to help the human leg move in consideration of external disturbances. The developed knee exoskeleton has been employed successfully to assist impaired users with knee dysfunction to walk in a health recovery center. The experimental results indicate that the online gait generation method and the proposed control method are suitable for the knee exoskeleton. The maximum value of the target knee angular position is approximately 50° and the mean of the control torque for the knee joint is located in the interval of [− 2 Nm, 4 Nm]. The developed knee exoskeleton has the potential to regain normal gait to improve strength and endurance during walking in their activities of daily life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Long, Y., Du, Z. J., Wang, W. D., & Dong, W. (2018). Human motion intent learning based adaptive motion assistance control for a wearable exoskeleton. Robotics and Computer-integrated Manufacturing, 49, 317–327.

    Article  Google Scholar 

  2. Pinto-Fernandez, D., Torricelli, D., Sanchez-Villamanan, M., Aller, F., & Pons, J. L. (2020). Performance evaluation of lower limb exoskeletons: A systematic review. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(7), 1573–1583.

    Article  Google Scholar 

  3. Esquenazi, A., Talaty, M., Packel, A., & Saulino, M. (2012). The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. American Journal of Physical Medicine & Rehabilitation, 91(11), 911–921.

    Article  Google Scholar 

  4. Witte, K. A., Fiers, P., Sheets-Singer, A. L., & Collins, S. H. (2020). Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance. Science Robotics, 5(40), 9108.

    Article  Google Scholar 

  5. Liu, X. H., & Wang, Q. N. (2020). Real-time locomotion mode recognition and assistive torque control for unilateral knee exoskeleton on different terrains. IEEE/ASME Transactions on Mechatronics, 25(6), 2722–2732.

    Article  Google Scholar 

  6. Naghavi, N., Akbarzadeh, A., Tahamipour, S. M., & Kardan, I. (2020). Assist-as-needed control of a hip exoskeleton based on a novel strength index. Robotics and Autonomous Systems, 134, 103667.

    Article  Google Scholar 

  7. Shamaei, K., Cenciarini, M., Adams, A. A., Gregorczyk, K. N., Schiffman, J. M., & Dollar, A. M. (2014). Design and evaluation of a quasi-passive knee exoskeleton for investigation of motor adaptation in lower extremity joint. IEEE Transactions on Biomedical Engineering, 61(6), 1809–1821.

    Article  Google Scholar 

  8. Zhang, L., Liu, G., Han, B., Wang, Z., & Jiao, Y. (2019). Assistive devices of human knee joint: A review. Robotics and Autonomous Systems, 125, 1–30.

    Google Scholar 

  9. Knaepen, K., Beyl, P., Duerinck, S., Hagman, F., Lefeber, D., & Meeusen, R. (2014). Human-robot interaction: Kinematics and muscle activity inside a powered compliant knee exoskeleton. IEEE transactions on neural systems and rehabilitation engineering, 22(6), 1128–1137.

    Article  Google Scholar 

  10. Yang, L., Zhou, Z. H., & Wang, Q. N. (2015). BioKEX: A bionic knee exoskeleton with proxy-based sliding mode control. IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 125–130.

  11. Yu, S., Huang, T. H., Yang, X. L., Jiao, C. H., Yang, J. F., Hu, H., Zhang, S. N., Chen, Y., Yi, J. G., & Su, H. (2020). Quasi-direct drive actuation for a lightweight hip exoskeleton with high backdrivability and high bandwidth. IEEE/ASME Transactions on Mechatronics, 25(4), 1–10.

    Article  Google Scholar 

  12. Zhu, H., Nesler, C., Divekar, N., Ahmad, M. T., & Gregg, R. D. (2019). Design and validation of a partial-assist knee orthosis with compact, backdrivable actuation. IEEE 16th International Conference on Rehabilitation Robotics, Toronto, Canada, 917–924 .

  13. Han, Y. L., Zhu, S. Q., Gao, H. T., Wu, Z. Y., Xu, Y. X., & Zhou, W. J. (2020). The swing control of knee exoskeleton based on admittance model and nonlinear oscillator. Journal of Intelligent & Robotic Systems, 99(3–4), 747–756.

    Article  Google Scholar 

  14. Li, F., Wang, Q. D., Xie, Y., & Xie, H. L. (2020). Admittance control of four-link bionic knee exoskeleton with inertia compensation. Tehnicki Vjesnik-Technical Gazette, 27(3), 891–897.

    Google Scholar 

  15. Beyl, P., Knaepen, K., Duerinck, S., Damme, M. V., Vanderborght, B., Meeusen, R., & Lefeber, D. (2011). Safe and compliant guidance by a powered knee exoskeleton for robot-assisted rehabilitation of gait. Advanced Robotics, 25(5), 513–535.

    Article  Google Scholar 

  16. Shepherd, M., & Rouse, E. (2017). Design and validation of a torque-controllable knee exoskeleton for sit-to-stand assistance. IEEE/ASME Transactions on Mechatronics, 22(4), 1695–1704.

    Article  Google Scholar 

  17. Zhang, L. C., Huang, Q., Cai, K. J., Wang, Z. H., Wang, W. K., & Liu, J. (2020). A wearable soft knee exoskeleton using vacuum-actuated rotary actuator. IEEE Access, 8, 61311–61326.

    Article  Google Scholar 

  18. Wang, J. L., Li, X., Huang, T. H., Yu, S. Y., Li, Y. J., Chen, T. Y., Carriero, A., Oh-Park, M., & Su, H. (2018). Comfort-centered design of a lightweight and backdrivable knee exoskeleton. IEEE Robotics and Automation Letters, 3(4), 4265–4272.

    Article  Google Scholar 

  19. Li, D. Z., Ding, P., & Gao, Z. Q. (2016). Fractional active disturbance rejection control. ISA Transactions, 62, 109–119.

    Article  Google Scholar 

  20. Chen, C. F., Du, Z. J., He, L., Wang, J. Q., & Dong, W. (2019). Active disturbance rejection with fast terminal sliding mode control for a lower limb exoskeleton in swing phase. IEEE Access, 7, 72343–72357.

    Article  Google Scholar 

  21. Aole, S., Elamvazuthi, I., Waghmare, L., Patre, B., & Meriaudeau, F. (2020). Improved active disturbance rejection control for trajectory tracking control of lower limb robotic rehabilitation exoskeleton. Sensors, 20(13), 3681.

    Article  Google Scholar 

  22. Long, Y., Du, Z. J., Wang, W., & Dong, W. (2016). Development of a wearable exoskeleton rehabilitation system based on hybrid control mode”. International Journal of Advanced Robotic Systems, 13(5), 1–13.

    Article  Google Scholar 

  23. Long, Y., Du, Z. J., Wang, W., & Dong, W. (2016). Robust sliding mode control based on GA optimization and CMAC compensation for lower limb exoskeleton. Applied Bionics and Biomechanics, 2016, 1–13.

    Article  Google Scholar 

  24. Liu, C. J., Geng, W. D., Liu, M., & Chen, Q. J. (2020). Workspace trajectory generation method for humanoid adaptive walking with dynamic motion primitives. Access IEEE, 8, 54652–54662.

    Article  Google Scholar 

  25. Vanderborght, B., Verrelst, B., Ham, R. V., Damme, M. V., & Lefeber, D. (2008). Objective locomotion parameters based inverted pendulum trajectory generator. Robotics & Autonomous Systems, 56(9), 738–750.

    Article  Google Scholar 

  26. Yuan, Y. X., Li, Z. J., Zhao, T., & Gan, D. (2020). DMP-based motion generation for a walking exoskeleton robot using reinforcement learning. IEEE Transactions on Industrial Electronics, 67(5), 3830–3839.

    Article  Google Scholar 

  27. Long, Y., Du, Z. J., Cong, L., Wang, W. D., Zhang, Z. M., & Dong, W. (2017). Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton. ISA Transactions, 67, 389–397.

    Article  Google Scholar 

  28. Gao, Z. Q. (2003). Scaling and bandwidth-parameterization based controller tuning. The 2003 American Control Conference, Denver, USA, 4989–4996.

Download references

Acknowledgements

We are grateful to the Natural Science Foundation of Guangdong Province (2020A1515110121) and the Fundamental Research Funds for the Central Universities (N2129002) for all support provided to realize this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Long.

Ethics declarations

Conflict of Interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Y., Peng, Y. Design and Control of a Quasi-direct Drive Actuated Knee Exoskeleton. J Bionic Eng 19, 678–687 (2022). https://doi.org/10.1007/s42235-022-00168-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00168-2

Keywords

Navigation