Skip to main content
Log in

Preparation and Antibacterial Activity of Superhydrophobic Modified ZnO/PVC Nanocomposite

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

We fabricated a superhydrophobic modified ZnO/PVC nanocomposite cluster with antibacterial properties using the chemical precipitation method and selected solvent/non-solvent (THF/ethanol) to PVC. The effects of ethanol content (47%, 50%, 53%, and 56%) on nanocomposite morphology and Water Contact Angles (WCAs) were investigated. XRD measurements confirmed the polycrystalline structure of ZnO with a wurtzite hexagonal phase, and EDX results indicated the presence of all element peaks. FESEM analysis of specimens revealed a rough surface structure resembling a cluster of NPs, and that structure was dominant when the ethanol content increased to 56%. The WCA increased on the superhydrophobic nanocomposite as ethanol content increased, and an optimum WCA (160° ± 2°) was obtained at an ethanol content of 56%. Antibacterial activity was tested on the superhydrophobic and hydrophobic states, and the superhydrophobic specimens showed good inhibition against Klebsiella spp. and Staphylococcus epidermidis. However, the hydrophobic specimens demonstrated no antibacterial activity against S. epidermidis. These promising results can inform the development of nanocomposites for many environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lu, J., Loh, X. J., He, C. B., & Li, Z. B. (2020). Superhydrophobic materials derived from hybrid silicon copolymers. In: He, C. B and Li, Z. B., eds. Silicon Containing Hybrid Copolymers, 119–143.

  2. Latthe, S. S., Sutar, R. S., Kodag, V. S., Bhosale, A., Kumar, A. M., Sadasivuni, K. K., Xing, R., & Liu, S. (2019). Self–cleaning superhydrophobic coatings: potential industrial applications. Progress in Organic Coatings, 128, 52–58.

    Article  Google Scholar 

  3. Darmanin, T., & Guittard, F. (2015). Superhydrophobic and superoleophobic properties in nature. Materials Today, 18, 273–285.

    Article  Google Scholar 

  4. Ganesh, V. A., Raut, H. K., Nair, A. S., & Ramakrishna, S. (2011). A review on self-cleaning coatings. Journal of Materials Chemistry, 21, 16304–16322.

    Article  Google Scholar 

  5. Chu, D., Nemoto, A., & Ito, H. (2015). Biomimetic superhydrophobic polymer surfaces by replication of hierarchical structures fabricated using precision tooling machine and anodized aluminum oxidation. Microsystem Technologies, 21, 123–130.

    Article  Google Scholar 

  6. Theuretzbacher, U., Outterson, K., Engel, A., & Karlén, A. (2019). The global preclinical antibacterial pipeline. Nature Reviews Microbiology, 18, 1–11.

    Google Scholar 

  7. Homaeigohar, S., & Boccaccini, A. R. (2020). Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 107, 25–49.

    Article  Google Scholar 

  8. Bidoki, S., & Wittlinger, R. (2010). Environmental and economical acceptance of polyvinyl chloride (PVC) coating agents. Journal of Cleaner Production, 18, 219–225.

    Article  Google Scholar 

  9. Grause, G., Hirahashi, S., Toyoda, H., Kameda, T., & Yoshioka, T. (2017). Solubility parameters for determining optimal solvents for separating PVC from PVC-coated PET fibers. Journal of Material Cycles and Waste Management, 19, 612–622.

    Article  Google Scholar 

  10. Yingke, K. K., Wang, J. Y., Yang, G. B., Xiong, X. J., Chen, X. H., Yu, L. G., & Zhang, P. Y. (2011). Preparation of porous super-hydrophobic and super-oleophilic polyvinyl chloride surface with corrosion resistance property. Applied Surface Science, 258, 1008–1013.

    Article  Google Scholar 

  11. Vourdas, N., Tserepi, A., & Gogolides, E. (2007). Nanotextured super-hydrophobic transparent poly (methyl methacrylate) surfaces using high-density plasma processing. Nanotechnology, 18, 125304.

    Article  Google Scholar 

  12. Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C., & Roach, P. (2007). Superhydrophobic to superhydrophilic transitions of sol–gel films for temperature, alcohol or surfactant measurement. Materials Chemistry and Physics, 103, 112–117.

    Article  Google Scholar 

  13. Lim, J.-M., Yi, G.-R., Moon, J. H., Heo, C.-J., & Yang, S.-M. (2007). Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir, 23, 7981–7989.

    Article  Google Scholar 

  14. Li, X. H., Chen, G. M., Ma, Y. M., Feng, L., Zhao, H. Z., Jiang, L., & Wang, F. S. (2006). Preparation of a super-hydrophobic poly (vinyl chloride) surface via solvent–nonsolvent coating. Polymer, 47, 506–509.

    Article  Google Scholar 

  15. Peng, C. Y., Chen, Z. Y., & Tiwari, M. K. (2018). All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nature materials, 17, 355–360.

    Article  Google Scholar 

  16. Wang, P., Wei, W. D., Li, Z. Q., Duan, W., Han, H. L., & Xie, Q. (2020). A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance. Journal of Materials Chemistry A, 8, 3509–3516.

    Article  Google Scholar 

  17. Kołodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide—from synthesis to application: A review. Materials, 7, 2833–2881.

    Article  Google Scholar 

  18. Zhang, M. J., Ma, W. J., Cui, J., Wu, S. T., Han, J. Q., Zou, Y., & Huang, C. (2020). Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment. Journal of Hazardous Materials, 383, 121152.

    Article  Google Scholar 

  19. Klingshirn, C. (2007). ZnO: From basics towards applications. Physica Status Solidi (b), 244, 3027–3073.

    Article  Google Scholar 

  20. Liu, J., Wang, Y., Ma, J. Z., Peng, Y., & Wang, A. (2019). A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. Journal of Alloys and Compounds, 783, 898–918.

    Article  Google Scholar 

  21. Kumar, R., Umar, A., Kumar, G., & Nalwa, H. S. (2017). Antimicrobial properties of ZnO nanomaterials: A review. Ceramics International, 43, 3940–3961.

    Article  Google Scholar 

  22. Khoshhesab, Z. M., Sarfaraz, M., & Asadabad, M. A. (2011). Preparation of ZnO nanostructures by chemical precipitation method. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41, 814–819.

    Article  Google Scholar 

  23. Ahmad, M. B., Lim, J. J., Shameli, K., Ibrahim, N. A., Tay, M. Y., & Chieng, B. W. (2012). Antibacterial activity of silver bionanocomposites synthesized by chemical reduction route. Chemistry Central Journal, 6, 101.

    Article  Google Scholar 

  24. Sabry, R. S., Aziz, W. J., & Rahmah, M. I. (2020). Employed silver doping to improved photocatalytic properties of ZnO micro/manostructures. Journal of Inorganic and Organometallic Polymers and Materials, 30, 1–11.

    Article  Google Scholar 

  25. Sabry, R. S., & Al-Mosawi, M. I. (2018). Novel approach to fabricate a stable superhydrophobic polycarbonate. Surface Engineering, 34, 151–157.

    Article  Google Scholar 

  26. Otto, M. (2009). Staphylococcus epidermidis—the’accidental’pathogen. Nature Reviews Microbiology, 7, 555.

    Article  Google Scholar 

  27. Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11, 589–603.

    Article  Google Scholar 

  28. Abbas, S., Hussain, K., Hussain, Z., Ali, R., & Abbas, T. (2016). Anti-bacterial activity of different soaps available in local market of Rawalpindi (Pakistan) against daily encountered bacteria. Pharmaceutica Analytica Acta, 7, 2.

    Google Scholar 

  29. Singh, R., Barman, P., & Sharma, D. (2017). Synthesis, structural and optical properties of Ag doped ZnO nanoparticles with enhanced photocatalytic properties by photo degradation of organic dyes. Journal of Materials Science: Materials in Electronics, 28, 5705–5717.

    Google Scholar 

  30. Sahai, A., Kumar, Y., Agarwal, V., Olive-Méndez, S., & Goswami, N. (2014). Doping concentration driven morphological evolution of Fe doped ZnO nanostructures. Journal of Applied Physics, 116, 164315.

    Article  Google Scholar 

  31. Raja, K., Ramesh, P., & Geetha, D. (2014). Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method. Spectrochimica Acta Part A, 131, 183–188.

    Article  Google Scholar 

  32. Helmlinger, J., Sengstock, C., Groß-Heitfeld, C., Mayer, C., Schildhauer, T., Köller, M., & Epple, M. (2016). Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. Royal Society of Chemistry Advances, 6, 18490–18501.

    Google Scholar 

  33. Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28, 988–994.

    Article  Google Scholar 

  34. Liu, Y., Tang, J., Li, L. X., Shek, Y. N., & Xu, D. Y. (2019). Design of Cassie-wetting nucleation sites in pool boiling. International Journal of Heat and Mass Transfer, 132, 25–33.

    Article  Google Scholar 

  35. Loo, C.-Y., Young, P. M., Lee, W.-H., Cavaliere, R., Whitchurch, C. B., & Rohanizadeh, R. (2012). Superhydrophobic, nanotextured polyvinyl chloride films for delaying Pseudomonas aeruginosa attachment to intubation tubes and medical plastics. Acta biomaterialia, 8, 1881–1890.

    Article  Google Scholar 

  36. Khoryani, Z., Seyfi, J., & Nekoei, M. (2018). Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films. Applied Surface Science, 428, 933–940.

    Article  Google Scholar 

  37. Zhao, N., Xu, J., Xie, Q. D., Weng, L. H., Guo, X. L., Zhang, X. L., & Shi, L. H. (2005). Fabrication of biomimetic superhydrophobic coating with a micro-nano-binary structure. Macromolecular Rapid Communications, 26, 1075–1080.

    Article  Google Scholar 

  38. Guan, R., Zhai, H., Sun, D., Zhang, J., Wang, Y., & Li, J. (2019). Effects of Ag doping content and dispersion on the photocatalytic and antibacterial properties in ZnO nanoparticles. Chemical Research in Chinese Universities, 35, 271–276.

    Article  Google Scholar 

  39. Inwati, G. K., Kumar, P., Roos, W., & Swart, H. (2020). Thermally induced structural metamorphosis of ZnO: Rb nanostructures for antibacterial impacts. Colloids and Surfaces B, 188, 110821.

    Article  Google Scholar 

  40. Bereksi, M. S., Hassaïne, H., Bekhechi, C., & Abdelouahid, D. E. (2018). Evaluation of antibacterial activity of some medicinal plants extracts commonly used in Algerian traditional medicine against some pathogenic bacteria. Pharmacognosy Journal, 10, 507–512.

    Article  Google Scholar 

  41. Kuriakose, S., Choudhary, V., Satpati, B., & Mohapatra, S. (2014). Facile synthesis of Ag–ZnO hybrid nanospindles for highly efficient photocatalytic degradation of methyl orange. Physical Chemistry Chemical Physics, 16, 17560–17568.

    Article  Google Scholar 

  42. Rawat, J., Rana, S., Srivastava, R., & Misra, R. D. K. (2007). Antimicrobial activity of composite nanoparticles consisting of titania photocatalytic shell and nickel ferrite magnetic core. Materials Science and Engineering C, 27, 540–545.

    Article  Google Scholar 

Download references

Acknowledgements

These authors would like to thank Mustansiriyah University (https://uomustansiriyah.edu.iq) Baghdad—Iraq for its support in the present work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muntadher Ismail Rahmah or Raad Saadon Sabry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmah, M.I., Sabry, R.S. & Aziz, W.J. Preparation and Antibacterial Activity of Superhydrophobic Modified ZnO/PVC Nanocomposite. J Bionic Eng 19, 139–154 (2022). https://doi.org/10.1007/s42235-021-00106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00106-8

Keywords

Navigation