Skip to main content
Log in

Together We Stand – Analyzing Schooling Behavior in Naive Newborn Guppies through Biorobotic Predators

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

A major advantage of animal aggregations concerns cooperative antipredator strategies. Schooling behavior emerges earlier in many fish species, especially in those cannibalizing their offspring. Experience is fundamental for developing schooling behavior. However, the cognitive ability of naive newborn fish to aggregate remains unclear. Herein, Poecilia reticulata, was selected as model organism to investigate how combinations of biomimetic robotic agents and adult conspecific olfactory cues affect collective responses in newborns. The role of white and brown backgrounds in evoking aggregations was also assessed. Olfactory cues were sufficient for triggering aggregations in P. reticulata newborns, although robotic agents had a higher influence on the group coalescence. The combination of robotic agents and olfactory cues increased schooling behavior duration. Notably, schooling was longer in the escape compartment when robotic agents were presented, except for the combination of the male-mimicking robotic fish plus adult guppy olfactory cues, with longer schooling behavior in the exploring compartment. Regardless of the tested cues, newborn fish aggregated preferentially on the brown areas of the arena. Overall, this research provides novel insights on the early collective cognitive ability of newborn fish, paving the way to the use of biomimetic robots in behavioral ecology experiments, as substitutes for real predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brodie E D. Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 1992, 46, 1284–1298.

    Article  Google Scholar 

  2. Seghers B H, Shaw P W, Carvalho G R. The behavioral diversity and evolution of guppy, Poecilia reticulata, populations in Trinidad. Advances in the Study of Behavior, 1995, 24, 155–202.

    Article  Google Scholar 

  3. McCollum S A, Van Buskirk J. Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution, 1996, 50, 583–593.

    Article  Google Scholar 

  4. Gallie J A, Mumme R L, Wissinger S A. Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American toad, Bufo americanus. Herpetologica, 2001, 57, 376–383.

    Google Scholar 

  5. O'Steen S, Cullum A J, Bennett A F. Rapid evolution of escape ability in Trinidadian guppies (Poecilia reticulata). Evolution, 2002, 56, 776–784.

    Article  Google Scholar 

  6. Barber I, Folstad I. Schooling, dusk flight and dance: Social organisations as amplifiers of individual quality? Oikos, 2000, 89, 191–194.

    Article  Google Scholar 

  7. Agrillo C, Dadda M, Serena G. Choice of female groups by male mosquitofish (Gambusia holbrooki). Ethology, 2008, 114, 479–488.

    Article  Google Scholar 

  8. Parrish J K, Strand S W, Lott J L. Predation on a school of flat-iron herring, Harengula thrissina. Copeia, 1989, 1989, 1089–1091.

    Article  Google Scholar 

  9. Brock V E, Riffenburgh R H. Fish schooling: A possible factor in reducing predation. ICES Journal of Marine Science, 1960, 25, 307–317.

    Article  Google Scholar 

  10. Hamilton W D. Geometry for the selfish herd. Journal of Theoretical Biology, 1971, 31, 295e311.

    Article  Google Scholar 

  11. Fernö A, Pitcher T J, Melle W, Nøttestad L, Mackinson S, Hollingworth C, Misund O A. The challenge of the herring in the Norwegian Sea: Making optimal collective spatial decisions. Sarsia, 1998, 83, 149–167.

    Article  Google Scholar 

  12. Katz Y, Tunstrøm K, Ioannou C C, Huepe C, Couzin I D. Inferring the structure and dynamics of interactions in schooling fish. Proceedings of the National Academy of Sciences, 2011, 108, 18720–18725.

    Article  Google Scholar 

  13. Rieucau G, Holmin A J, Castillo J C, Couzin I D, Handegard N O. School level structural and dynamic adjustments to risk promote information transfer and collective evasion in herring. Animal Behaviour, 2016, 117, 69–78.

    Article  Google Scholar 

  14. Brown J A. Parental care and the ontogeny of predatoravoidance in two species of centrarchid fish. Animal Behaviour, 1984, 32, 113–119.

    Article  Google Scholar 

  15. Magurran A E, Seghers B H. Population differences in the schooling behaviour of newborn guppies, Poecilia reticulata. Ethology, 1990, 84, 334–342.

    Article  Google Scholar 

  16. Lima N R W, Vrijenhoek R C. Avoidance of filial cannibalism by sexual and clonal forms of Poeciliopsis (Pisces: Poeciliidae). Animal Behaviour, 1996, 51, 293–301.

    Article  Google Scholar 

  17. Petrazzini M E M, Agrillo C, Piffer L, Dadda M, Bisazza A. Development and application of a new method to investigate cognition in newborn guppies. Behavioural Brain Research, 2012, 233, 443–449.

    Article  Google Scholar 

  18. Shaw E. The development of schooling in fishes. II. Physiological Zoology, 1961, 34, 263–272.

    Article  Google Scholar 

  19. Hunter J R, Coyne K M. The onset of schooling in northern anchovy larvae, Engraulis mordax. California Cooperative Oceanic Fisheries Investigations, 1982, 23, 246–251.

    Google Scholar 

  20. Buske C, Gerlai R. Shoaling develops with age in Zebrafish (Danio rerio). Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1409–1415.

    Article  Google Scholar 

  21. Patten B G. Body size and learned avoidance as factors affecting predation on coho salmon, Oncorhynchus kisutch, fry by torrent sculpin, Cottus rhotheus. Fish Service USA, 1977, 75, 457–459.

    Google Scholar 

  22. Bronmark C, Miner J G. Predator-induced phenotypical change in body morphology in crucian carp. Science, 1992, 258, 1348–1350.

    Article  Google Scholar 

  23. Chapman B B, Morrell L J, Benton T G, Krause J. Early interactions with adults mediate the development of predator defenses in guppies. Behavioral Ecology, 2007, 19, 87–93.

    Article  Google Scholar 

  24. Hoare D J, Couzin I D, Godin J G, Krause J. Contextdependent group size choice in fish. Animal Behaviour, 2004, 67, 155–164.

    Article  Google Scholar 

  25. Sinopoli M, Cattano C, Andaloro F, Sara G, Butler C M, Gristina M. Influence of fish aggregating devices (FADs) on anti-predator behaviour within experimental mesocosms. Marine Environmental Research, 2015, 112, 152–159.

    Article  Google Scholar 

  26. Huntingford F A. Some ethical issues raised by studies of predation and aggression. Animal Behaviour, 1984, 32, 210–215.

    Article  Google Scholar 

  27. ASAB/ABS. Guidelines for the treatment of animals in behavioural research and teaching. Animal Behaviour, 2004, 99, 1–9.

    Google Scholar 

  28. D'eath R B. Can video images imitate real stimuli in animal behaviour experiments? Biological Reviews, 1998, 73, 267–292.

    Article  Google Scholar 

  29. Rowland W J. Studying visual cues in fish behavior: A review of ethological techniques. Environmental Biology of Fishes, 1999, 56, 285–305.

    Article  Google Scholar 

  30. Tinbergen N. The Study of Instinct, Clarendon Press, Oxford, UK, 1951.

    MATH  Google Scholar 

  31. Webb B. What does robotics offer animal behaviour? Animal Behaviour, 2000, 60, 545–558.

    Article  Google Scholar 

  32. Halloy J, Sempo G, Caprari G, Rivault C, Asadpour M, Tâche F, Said I, Durier V, Canonge S, Ame J M, Detrain C, Correll N, Martinoli A, Mondada F, Siegwart R, Deneubourg J L. Social integration of robots into groups of cockroaches to control self-organized choices. Science, 2007, 318, 1155–1158.

    Article  Google Scholar 

  33. Krause J, Winfield A F, Deneubourg J L. Interactive robots in experimental biology. Trends in Ecology & Evolution, 2011, 26, 369–375.

    Article  Google Scholar 

  34. Romano D, Benelli G, Donati E, Remorini D, Canale A, Stefanini C. Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes. Scientific Reports, 2017, 7, 4667.

    Article  Google Scholar 

  35. Bierbach D, Lukas J, Bergmann A, Elsner K, Höhne L, Weber C, Weimar N, Arias-Rodriguez L, Mönck H J, Nguyen H, Romanczuk P, Landgraf T, Krause J. Insights into the social behavior of surface and cave-dwelling fish (Poecilia mexicana) in light and darkness through the use of a biomimetic robot. Frontiers in Robotics and AI, 2018, 5, 3.

    Article  Google Scholar 

  36. Kim C, Ruberto T, Phamduy P, Porfiri M. Closed-loop control of zebrafish behaviour in three dimensions using a robotic stimulus. Scientific Reports, 2018, 8, 657.

    Article  Google Scholar 

  37. Bonnet F, Gribovskiy A, Halloy J, Mondada F. Closed-loop interactions between a shoal of zebrafish and a group of robotic fish in a circular corridor. Swarm Intelligence, 2018, 12, 227–244.

    Article  Google Scholar 

  38. Benelli G, Romano D, Rocchigiani G, Caselli A, Mancianti F, Canale A, Stefanini C. Behavioral asymmetries in ticks–Lateralized questing of Ixodes ricinus to a mechatronic apparatus delivering host-borne cues. Acta Tropica, 2018, 178, 176–181.

    Article  Google Scholar 

  39. Worm M, Kirschbaum F, von der Emde G. Social interactions between live and artificial weakly electric fish: Electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish. PLoS One, 2017, 12, e0184622.

    Article  Google Scholar 

  40. Katzschmann R K, DelPreto J, MacCurdy R, Rus D. Exploration of underwater life with an acoustically controlled soft robotic fish. Science Robotics, 2018, 3, eaar3449.

    Article  Google Scholar 

  41. Cianca V, Bartolini T, Porfiri M, Macrì S. A robotics-based behavioral paradigm to measure anxiety-related responses in zebrafish. PLoS One, 2013, 8, e69661.

    Article  Google Scholar 

  42. Ladu F, Bartolini T, Panitz S G, Chiarotti F, Butail S, Macrì S, Porfiri M. Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish. Zebrafish, 2015, 12, 205–214.

    Article  Google Scholar 

  43. Romano D, Benelli G, Stefanini C. Escape and surveillance asymmetries in locusts exposed to a Guinea fowl-mimicking robot predator. Scientific Reports, 2017, 7, 12825.

    Article  Google Scholar 

  44. Magurran A E. Evolutionary Ecology: The Trinidadian Guppy, Oxford University Press on Demand, Oxford, UK, 2005.

    Book  Google Scholar 

  45. Tollrian R, Harvell C D. The Ecology and Evolution of Inducible Defenses, Princeton University Press, Princeton, USA, 1999.

    Google Scholar 

  46. Reynolds J D, Gross M R. Female mate preference enhances offspring growth and reproduction in a fish, Poecilia reticulata. Proceedings of the Royal Society of London B: Biological Sciences, 1992, 250, 57–62.

    Article  Google Scholar 

  47. Goodey W, Liley N R. The influence of early experience on escape behaviour in the guppy (Poecilia reticulata). Canadian Journal of Zoology, 1986, 64, 885–888.

    Article  Google Scholar 

  48. Houde A. Sex, Color, and Mate Choice in Guppies, Princeton University Press, Princeton, USA, 1997.

    Google Scholar 

  49. Blows M W, Brooks R, Kraft P G. Exploring complex fitness surfaces: Multiple ornamentation and polymorphism in male guppies. Evolution, 2003, 57, 1622–1630.

    Article  Google Scholar 

  50. Long K D, Houde A E. Orange spots as a visual cue for female mate choice in the guppy (Poecilia reticulata). Ethology, 1989, 82, 316–324.

    Article  Google Scholar 

  51. Houde A E, Endler J A. Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science, 1990, 248, 1405–1408.

    Article  Google Scholar 

  52. Pitcher T E, Neff B D, Rodd F H, Rowe L. Multiple mating and sequential mate choice in guppies: Females trade up. Proceedings of the Royal Society of London B: Biological Sciences, 2003, 270, 1623–1629.

    Article  Google Scholar 

  53. Canale A, Benelli G, Germinara G S, Fusini G, Romano D, Rapalini F, Desneux N, Rotundo G, Raspi A, Carpita A. Behavioural and electrophysiological responses to overlooked female pheromone components in the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Chemoecology, 2015, 25, 147–157.

    Article  Google Scholar 

  54. Mikheev V N, Andreev O A. Two-phase exploration of a novel environment in the guppy, Poecilia reticulata. Journal of Fish Biology, 1993, 42, 375–383.

    Article  Google Scholar 

  55. Magurran A E, Seghers B H. Predator inspection behaviour covaries with schooling tendency amongst wild guppy, Poecilia reticulata, populations in Trinidad. Behaviour, 1994, 128, 121–134.

    Article  Google Scholar 

  56. Kim J W, Brown G E, Dolinsek I J, Brodeur N N, Leduc A O H C, Grant J W A. Combined effects of chemical and visual information in eliciting antipredator behaviour in juvenile Atlantic salmon Salmo salar. Journal of Fish Biology, 2009, 74, 1280–1290.

    Article  Google Scholar 

  57. Anichtchik O V, Kaslin J, Peitsaro N, Scheinin M, Panula P. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Journal of Neurochemistry, 2004, 88, 443–453.

    Article  Google Scholar 

  58. Baraban S C, Taylor M R, Castro P A, Baier H. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience, 2005, 131, 759–768.

    Article  Google Scholar 

  59. Maximino C, De Brito T M, de Mattos Dias C A G, Gouveia Jr A, Morato S. Scototaxis as anxiety-like behavior in fish. Nature Protocols, 2010, 5, 209–216.

    Article  Google Scholar 

  60. Schnörr S J, Steenbergen P J, Richardson M K, Champagne D L. Measuring thigmotaxis in larval zebrafish. Behavioural Brain Research, 2012, 228, 367–374.

    Article  Google Scholar 

  61. Smith M E, Belk M C. Risk assessment in western mosquitofish (Gambusia affinis): Do multiple cues have additive effects? Behavioral Ecology and Sociobiology, 2001, 51, 101–107.

    Article  Google Scholar 

  62. Vershinin A. Biological functions of carotenoids - Diversity and evolution. Biofactors, 1999, 10, 99–104.

    Article  Google Scholar 

  63. Clotfelter E D, Ardia D R, McGraw K J. Red fish, blue fish: Trade-offs between pigmentation and immunity in Betta splendens. Behavioral Ecology, 2007, 18, 1139–1145.

    Article  Google Scholar 

  64. Svensson P A, Wong B B M. Carotenoid-based signals in behavioural ecology: A review. Behaviour, 2011, 148, 131–189.

    Article  Google Scholar 

  65. Romano D, Benelli G, Hwang J S, Stefanini C. Fighting fish love robots: Mate discrimination in males of a highly territorial fish by using female-mimicking robotic cues. Hydrobiologia, 2019, 833, 185–196.

    Article  Google Scholar 

  66. Templeton C N, Shriner W M. Multiple selection pressures influence Trinidadian guppy (Poecilia reticulata) antipredator behavior. Behavioral Ecology, 2004, 15, 673–678.

    Article  Google Scholar 

  67. Bassar R D, Ferriere R, Lopez-Sepulcre A, Marshall M C, Travis J, Pringle C M, Reznick D N. Direct and indirect ecosystem effects of evolutionary adaptation in the Trinidadian guppy (Poecilia reticulata). The American Naturalist, 2012, 180, 167–185.

    Article  Google Scholar 

  68. Merilaita S. Visual background complexity facilitates the evolution of camouflage. Evolution, 2003, 57, 1248–1254.

    Article  Google Scholar 

  69. Ruxton G D, Sherratt T N, Speed M P, Speed M P, Speed M. Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry, Oxford University Press, Oxford, UK, 2004.

    Book  Google Scholar 

  70. Wootton R J. Ecology of Teleost Fishes, Springer Science & Business Media, Berlin, Germany, 1990.

    Google Scholar 

  71. Kjernsmo K, Merilaita S. Background choice as an antipredator strategy: The roles of background matching and visual complexity in the habitat choice of the least killifish. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4192–4198.

    Article  Google Scholar 

  72. Reader S M, Kendal J R, Laland K N. Social learning of foraging sites and escape routes in wild Trinidadian guppies. Animal Behaviour, 2003, 66, 729–739.

    Article  Google Scholar 

  73. Romano D, Benelli G, Stefanini C. Encoding lateralization of jump kinematics and eye use in a locust via bio-robotic artifacts. Journal of Experimental Biology, 2019, 222, jeb187427.

    Article  Google Scholar 

  74. Romano D, Donati E, Benelli G, Stefanini C. A review on animal-robot interaction: From bio-hybrid organisms to mixed societies. Biological Cybernetics, 2019, 113, 201–225.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Tim McGloughlin for helpful discussions on the topic. This research was partially supported by the H2020 Project “Submarine cultures perform long-term robotic exploration of unconventional environmental niches” (subCULTron) (No. 640967FP7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Romano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, D., Elayan, H., Benelli, G. et al. Together We Stand – Analyzing Schooling Behavior in Naive Newborn Guppies through Biorobotic Predators. J Bionic Eng 17, 174–184 (2020). https://doi.org/10.1007/s42235-020-0014-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-020-0014-7

Keywords

Navigation