Skip to main content
Log in

Bio-inspiration as a Concept for Sustainable Constructions Illustrated on Graded Concrete

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The building industry is one of the main contributors to worldwide resource consumption and anthropogenic climate change. Therefore, sustainable solutions in construction are particularly urgent. Inspired by the success principles of living nature, biologists and engineers present here an interdisciplinary work: The sustainability assessment of a bio-inspired material technology called graded concrete, which was developed at ILEK. Gradient structural materials can be found in plants on different hierarchical levels, providing a multitude of creative solutions for technology. Graded concrete applies this biological concept of structural optimization to the interior structure of concrete components to minimize material and resource expenditure. To evaluate the sustainability of this innovation, a newly developed quantitative Bio-inspired Sustainability Assessment (BiSA) method is applied. It focuses on the relationship of environmental, social and economic functions and the corresponding burdens quantified basing on life cycle assessment. The BiSA of graded concrete slabs shows significant improvements over conventional concrete for the applied use case. While an overall reduction of environmental burdens by 13% is expected, economic burdens can be reduced by up to 40% and social burdens by 35.7%. The assessment of the graded concrete technology identifies its potential with regard to sustainable construction. The presented work provides a blueprint for the interdisciplinary, integrative work on sustainable, bio-inspired innovations. It shows that the synergies of bio-inspiration and BiSA within technical product development can be fruitful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014.

  2. UNFCCC. Adoption of the Paris Agreement, Paris Agreement, Paris, France, 2015.

  3. United Nations Sustainable Buildings and Construction Programme, the 10YFP programme on sustainable buildings and construction, 2016.

  4. Baumert K A, Herzog T, Pershing J. Navigating the Numbers: Greenhouse Gas Data and International Climate Policy, World Resources Institute, Washington D.C., USA, 2005.

    Google Scholar 

  5. Barcelo L, Kline J, Walenta G, Gartner E. Cement and carbon emissions. Materials and Structures, 2014, 47, 1055–1065.

    Article  Google Scholar 

  6. IEA. Cement Technology Roadmap 2009: Carbon Emissions Reductions Up To 2050, IEA Technology Roadmaps, OECD Publishing, Paris, France, 2009.

    Google Scholar 

  7. Technology Roadmap Energy Efficient Building Envelopes, International Energy Agency, Paris, France, 2013.

  8. Xi F, Davis S J, Ciais P, Crawford-Brown D, Guan D, Pade C, Shi T, Syddall M, Lv J, Ji L Z, Bing L F, Wang J Y, Wei W, Yang K-H, Lagerblad B, Galan I, Andrade C, Zhang Y, Liu Z. Substantial global carbon uptake by cement carbonation. Nature Geoscience, 2016, 9, 880–883.

    Article  Google Scholar 

  9. Kim T, Tae S, Chae C. Analysis of environmental impact for concrete using LCA by varying the recycling components, the compressive strength and the admixture material mixing. Sustainability, 2016, 8, 389.

    Article  Google Scholar 

  10. Amato I. Concrete Solutions: Cement manufacturing is a major source of greenhouse gases. But cutting emissions means mastering one of the most complex materials known. Nature, 2013, 49, 300–301.

    Article  Google Scholar 

  11. Sobek W. Die Zukunft des Leichtbaus. Herausforderungen und mögliche Entwicklungen. Bautechnik, 2015, 92, 879–882. (in German)

    Article  Google Scholar 

  12. Hamm C. Evolution of Lightweight Structures: Analyses and Technical Applications, Springer, Berlin, Germany, 2015.

    Book  Google Scholar 

  13. Sobek W. Zum Entwerfen im Leichtbau. Der Bauingenieur, 1995, 70, 323–329. (in German)

    Google Scholar 

  14. Wörner M, Schmeer D, Schuler B, Pfinder J, Garrecht H, Sawodny O, Sobek W. Gradientenbetontechnologie. Betonund Stahlbetonbau, 2016, 111, 794–805. (in German)

    Article  Google Scholar 

  15. Palkovic S D, Brommer D B, Kupwade-Patil K, Masic A, Buehler M J, Büyüköztürk O. Roadmap across the mesoscale for durable and sustainable cement paste — A bioinspired approach. Construction and Building Materials, 2016, 115, 13–31.

    Article  Google Scholar 

  16. Speck T, Speck O. Process sequences in biomimetic research. Design and Nature IV: Comparing Design in Nature with Science and Engineering, WIT Press, Southampton, UK, 2008, 3–11.

    Google Scholar 

  17. BiomimeticsConception and StrategyDifferences Between Biomimetic and Conventional Methods/Products, German and English version, VDI 6220, 2012.

  18. Speck O, Speck D, Horn R, Gantner J, Sedlbauer K P. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments. Bioinspiration & Biomimetics, 2017, 12, 11004.

    Article  Google Scholar 

  19. Wegst U G K, Bai H, Saiz E, Tomsia A P, Ritchie R O. Bioinspired structural materials. Nature Materials, 2015, 14, 23–36.

    Article  Google Scholar 

  20. Wagner G P. Homologues, natural kinds and the evolution of modularity. American Zoologist, 1996, 36, 36–43.

    Article  Google Scholar 

  21. Rüggeberg M, Speck T, Paris O, Lapierre C, Pollet B, Koch G, Burgert I. Stiffness gradients in vascular bundles of the palm Washingtonia robusta. Proceedings of Biological Sciences, 2008, 275, 2221–2229.

    Article  Google Scholar 

  22. Kull U, Herbig A. Das Blattadersystem der Angiospermen. Form und Evolution. Naturwissenschaften, 1995, 82, 441–451. (in German)

    Article  Google Scholar 

  23. Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H. Evolution and function of leaf venation architecture: A review. Annals of Botany, 2001, 87, 553–566.

    Article  Google Scholar 

  24. McCoy R W. The anatomy of the leaf of Zeugites munroana, an anomalous grass. Bulletin of the Torrey Botanical Club, 1934, 61, 429–436.

    Article  Google Scholar 

  25. Liu X, Yan M, Galobardes I, Sikora K. Assessing the potential of functionally graded concrete using fibre reinforced and recycled aggregate concrete. Construction and Building Materials, 2018, 171, 793–801.

    Article  Google Scholar 

  26. Sobek W. Über die Gestaltung der Bauteilinnenräume: Meinem Freund Manfred Curbach zum 60. Geburtstag gewidmet. In: Scheerer S, van Stipriaan U. Festschrift zu Ehren von Prof. Dr.-Ing. Dr.-Ing. E.h. Manfred Curbach. Dresden, Germany: GWT-TUD GmbH, 2016. (in German)

    Google Scholar 

  27. Alam M S, Wahab M A, Jenkins C H. Mechanics in naturally compliant structures. Mechanics of Materials, 2007, 39, 145–160.

    Article  Google Scholar 

  28. Toader N, Sobek W, Nickel K G. Energy absorption in functionally graded concrete bioinspired by sea urchin spines. Journal of Bionic Engineering, 2017, 14, 369–378.

    Article  Google Scholar 

  29. Gleich A, Pade C, Petschow U, Pissarskoi E. Potentials and Trends in Biomimetics, Springer, Berlin, Heidelberg, Germany, 2010.

    Book  Google Scholar 

  30. von Gleich A. Das bionische Versprechen. Ist die Bionik so gut wie ihr Ruf? Ökologisches Wirtschaften, 2007, 22, 21–23. (in German)

    Google Scholar 

  31. Horn R, Gantner J, Widmer L, Sedlbauer K P, Speck O. Bio-inspired sustainability assessment: A conceptual framework. In: Knippers J, Nickel K G, Speck T, eds., Biomimetic Research for Architecture and Building Construction: Biological Design and Integrative Structures, Springer, Cham, Switzerland, 2016, 361–377.

    Chapter  Google Scholar 

  32. Horn R, Dahy H, Gantner J, Speck O, Leistner P. Bio-inspired sustainability assessment for building product development — concept and case study. Sustainability, 2018, 10, 1–25.

    Article  Google Scholar 

  33. Pedersen Zari M. Ecosystem processes for biomimetic architectural and urban design. Architectural Science Review, 2014, 58, 106–119.

    Article  Google Scholar 

  34. Reap J, Baumeister D, Bras B. Holism, biomimicry and sustainable engineering. ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, 2005, 423–431.

    Google Scholar 

  35. Guinée J. Life cycle sustainability assessment: What is it and what are its challenges? In: Clift R and Druckman A eds., Taking Stock of Industrial Ecology, Springer, Cham, Switzerland, 2016, 45–68.

    Chapter  Google Scholar 

  36. Weidema B P, Ekvall T, Heijungs R. Guidelines for Application of Deepened and Broadened LCA, deliverable D18 of work package 5 of the CALCAS project, 2009.

  37. Ziegler R, Ott K. The quality of sustainability science: A philosophical perspective. Sustainability: Science, Practice and Policy, 2017, 7, 31–44.

    Google Scholar 

  38. Environmental ManagementLife Cycle AssessmentPrinciples and Framework, German and English version, EN ISO 14040, 2006.

  39. Environmental ManagementLife Cycle AssessmentRequirements and Guidelines, German version, EN ISO 14044, 2006.

  40. ILCD handbookGeneral Guide for Life Cycle Assessment: Detailed Guidance, Publications Office of the European Union, Luxembourg, 2010.

  41. GaBi ts. Sofware-System and Databases for Life Cycle Engineering, thinkstep AG, 2017.

  42. GaBi Databases: Upgrades & Improvements, thinkstep AG, 2017.

  43. Gantner J, Beck T, Horn R. CommONEnergy Deliverable 5.7. Social Impact Assessment of Shopping Mall Retrofitting, CommONEnergy Project, 2017.

  44. Albrecht S, Endres H-J, Knüpffer E, Spierling S. Biokunststoffe — quo vadis? uwf UmweltWirtschaftsForum, 2016, 24, 55–62. (in German)

    Article  Google Scholar 

  45. Ko N, Lorenz M, Horn R, Krieg H, Baumann M. Sustainability assessment of Concentrated Solar Power (CSP) tower plants — Integrating LCA, LCC and LCWE in one framework. Procedia CIRP, 2018, 69, 395–400.

    Article  Google Scholar 

  46. Herrmann M, Sobek W. Gradientenbeton — Numerische Entwurfsmethoden und experimentelle Untersuchung gewichtsoptimierter Bauteile. Beton- und Stahlbetonbau, 2015, 110, 672–686. (in German)

    Article  Google Scholar 

  47. Liaver. Expanded glass technologies, [2017-12-29], http://www.liaver.com/en/liaver/fields-of-application/

  48. Carsana M, Bertolini L. Durability of lightweight concrete with expanded glass and silica fume. ACI Materials Journal, 2017, 114, 207–213.

    Article  Google Scholar 

  49. Popov M, Zakrevskaya L, Vaganov V, Hempel S, Mechtcherine V. Performance of lightweight concrete based on granulated foamglass. IOP Conference Series: Materials Science and Engineering, 2015, 96, 12017.

    Article  Google Scholar 

  50. Herrmann M. Gradientenbeton: Untersuchungen zur Gewichtsoptimierung einachsiger biege- und querkraftbeanspruchter Bauteile, Dissertation, Universität Stuttgart, Stuttgart, Germany, 2015. (in German)

    Google Scholar 

  51. Schmeer D, Sobek W. Weight-optimized and mono-material concrete components by the integration of mineralized hollow spheres. Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium, Hamburg, Germany, 2017.

  52. Schmidt-Bleek F, Bierter W. Das MIPS-Konzept. Weniger Naturverbrauch—mehr Lebensqualität durch Faktor 10, Droemer, München, Germany, 1998. (in German)

    Google Scholar 

  53. Saurat M, Ritthoff M. Calculating MIPS 2.0. Resources, 2013, 2, 581–607.

    Article  Google Scholar 

  54. Hallstedt S I. Sustainability criteria and sustainability compliance index for decision support in product development. Journal of Cleaner Production, 2017, 140, 251–266.

    Article  Google Scholar 

Download references

Acknowledgment

This work was mainly done under the support of the CRC-Transregio 141 “Biological Design and Integrative Structures—Analysis, Simulation and Implementation in Architecture”/project C01 funded by the German Research Foundation DFG. Significant contributions were made under the support of the project “Leichtbau im Bauwesen” funded by the ministry of economy Baden-Württemberg based on the results of the research projects “Effiziente automatisierte Herstellung multifunktionaler Bauteile mit mineralisierten Hohlkörpern” in the scope of the priority program 1542 “Leicht Bauen mit Beton” funded by the German Research Foundation DFG and “Multifunktional gradierte Bauteile für das nachhaltige Bauen mit Beton” supported by the Baden-Württemberg Foundation. The authors thank the Wirtschaftsministerium Baden-Württemberg for the financial support of this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Horn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, R., Albrecht, S., Haase, W. et al. Bio-inspiration as a Concept for Sustainable Constructions Illustrated on Graded Concrete. J Bionic Eng 16, 742–753 (2019). https://doi.org/10.1007/s42235-019-0060-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0060-1

Keywords

Navigation